Critical exponents of the<b><i>N</i></b>-vector model

Type: Article

Publication Date: 1998-10-09

Citations: 506

DOI: https://doi.org/10.1088/0305-4470/31/40/006

Abstract

Recently the series for two renormalization group functions (corresponding to the anomalous dimensions of the fields and ) of the three-dimensional field theory have been extended to next order (seven loops) by Murray and Nickel. We examine the influence of these additional terms on the estimates of critical exponents of the N-vector model, using some new ideas in the context of the Borel summation techniques. The estimates have slightly changed, but remain within the errors of the previous evaluation. Exponents such as (related to the field anomalous dimension), which were poorly determined in the previous evaluation of Le Guillou-Zinn-Justin, have seen their apparent errors significantly decrease. More importantly, perhaps, summation errors are better determined.

Locations

  • Journal of Physics A Mathematical and General - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Behavior of the Borel resummations for the critical exponents of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi></mml:math>-vector model 1982 David Z. Albert
+ PDF Chat Universal critical coupling constants for the three-dimensional<i>n</i>-vector model from field theory 1999 A. I. Sokolov
E. V. Orlov
V. A. Ul’kov
S. S. Kashtanov
+ PDF Chat Critical behavior of a general<i>O</i>(<i>n</i>)-symmetric model of two<i>n</i>-vector fields in<i>D</i>= 4 − 2Ï” 2009 Yu. M. Pis’mak
Alexej Weber
Franz Wegner
+ PDF Chat Five-loop renormalization-group expansions for the three-dimensional<b><i>n</i></b>-vector cubic model and critical exponents for impure Ising systems 2000 D. V. Pakhnin
A. I. Sokolov
+ Renormalized coupling constants for the three-dimensional n-vector model from field theory 1998 A. I. Sokolov
E. V. Orlov
V. A. Ul’kov
S. S. Kashtanov
+ PDF Chat Renormalization Group Approach to Matrix Models and Vector Models 1993 Saburo Higuchi
Chigak Itoi
Norisuke Sakai
+ Vector models in the large $N$ limit: a few applications 1998 Jean Zinn‐Justin
+ Vector models in the large $N$ limit: a few applications 1998 Jean Zinn‐Justin
+ PDF Chat Universality classes of the three-dimensional<i>mn</i>-vector model 2004 Maxym Dudka
Yurij Holovatch
T. Yavors’kii
+ Critical exponents and scaling relations for the classical vector model with long-range interactions 1972 Masuo Suzuki
+ PDF Chat Renormalized couplings and scaling correction amplitudes in the<b><i>N</i></b>-vector spin models on the sc and the bcc lattices 1998 P. Butera
M. Comi
+ PDF Chat Towards a fully automated computation of RG functions for the three-dimensional O(<i>N</i>) vector model: parametrizing amplitudes 2006 Riccardo Guida
Paolo Ribeca
+ PDF Chat 1/n Expansion Up to Order 1/n2. III: Critical Exponents and for d=3 1978 Yutaka Okabe
M. Oku
+ Discussion of critical phenomena for general<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>n</mml:mi></mml:math>-vector models 1974 E. Brézin
J. C. Le Guillou
Jean Zinn‐Justin
+ PDF Chat Wilson–Polchinski exact renormalization group equation for O (<i>N</i>) systems: leading and next-to-leading orders in the derivative expansion 2005 C. Bervillier
+ PDF Chat Breakdown of Some Scaling Law Relations in 1/<i>n</i>Expansion 1973 Ryuzo Abe
S. Hikami
+ Behavior critical for bond diluted n-vector model in the effective field theory 2000 Douglas F. de Albuquerque
+ O(N) Wilson-Polchinski exact renormalization group equation: Leading and next-to-leading orders in the derivative expansion 2005 C. Bervillier
+ PDF Chat Perturbative renormalization group, exact results, and high-temperature series to order 21 for the<i>N</i>-vector spin models on the square lattice 1996 P. Butera
M. Comi
+ PDF Chat CONCERNING THE DOUBLE SCALING LIMIT IN THE O(N) VECTOR MODEL IN FOUR DIMENSIONS 1992 Howard J. Schnitzer

Works That Cite This (337)

Action Title Year Authors
+ PDF Chat Precise critical exponents of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>O</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> -symmetric quantum field model using hypergeometric-Meijer resummation 2020 Abouzeid M. Shalaby
+ PDF Chat Conjectures on the exact solution of three-dimensional (3D) simple orthorhombic Ising lattices 2007 Z-D Zhang
+ PDF Chat From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions 2007 Emanuela Caliceti
Michael Meyer‐Hermann
Paolo Ribeca
A. Surzhykov
Ulrich D. Jentschura
+ Solving the 3d Ising Model with the Conformal Bootstrap II. $$c$$ c -Minimization and Precise Critical Exponents 2014 Sheer El-Showk
Miguel F. Paulos
David Poland
Slava Rychkov
David Simmons–Duffin
Alessandro Vichi
+ PDF Chat Red-bond exponents of the critical and the tricritical Ising model in three dimensions 2004 Youjin Deng
Henk W. J. Blöte
+ PDF Chat Conformal invariance in three dimensional percolation 2015 Giacomo Gori
Andrea Trombettoni
+ Critical exponents of the statistical multifragmentation model 2001 Philipp T. Reuter
K. A. Bugaev
+ PDF Chat Fast summation of divergent series and resurgent transseries from Meijer- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>G</mml:mi></mml:math> approximants 2018 HĂ©ctor Mera
Thomas Garm Pedersen
Branislav K. Nikolić
+ PDF Chat Universality aspects of the 2d random-bond Ising and 3d Blume-Capel models 2013 Nikolaos G. Fytas
Panagiotis E. Theodorakis
+ PDF Chat Conformal bootstrap for percolation and polymers 2018 André LeClair
Joshua William Squires

Works Cited by This (38)

Action Title Year Authors
+ PDF Chat 2n-point renormalized coupling constants in the three-dimensional Ising model:Estimates by high temperature series to order<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">Β</mml:mi></mml:mrow><mml:mrow><mml:mn>17</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> 1997 P. Butera
M. Comi
+ PDF Chat Critical exponents of the classical three-dimensional Heisenberg model: A single-cluster Monte Carlo study 1993 Christian Holm
Wolfhard Janke
+ Summation of divergent series by order dependent mappings: Application to the anharmonic oscillator and critical exponents in field theory 1979 R. Seznec
Jean Zinn‐Justin
+ Universal Effective Potential for Scalar Field Theory in Three Dimensions by Monte Carlo Computation 1994 M. M. Tsypin
+ The three-dimensional Ising model revisited numerically 1989 Andrea J. Liu
Michael E. Fisher
+ Accurate critical exponents from field theory 1989 J. C. Le Guillou
Jean Zinn‐Justin
+ Renormalized coupling constants and related amplitude ratios for Ising systems 1996 Shun-yong Zinn
S. Lai
Michael E. Fisher
+ Decay properties and borel summability for the Schwinger functions inP(Ί)2 theories 1975 Jean-Pierre Eckmann
J. Le Magnen
Roland Sénéor
+ Monte Carlo study of critical behavior in the three-dimensional classical Heisenberg ferromagnet 1993 Kun Chen
Alan M. Ferrenberg
D. P. Landau
+ The high-temperature susceptibility and spin-spin correlation function of the three-dimensional Ising model 1987 A J Guttmann