GENERALIZED LOCAL THEOREMS FOR SQUARE FUNCTIONS

Type: Article

Publication Date: 2016-07-25

Citations: 11

DOI: https://doi.org/10.1112/s0025579315000327

Abstract

A local theorem is an boundedness criterion by which the question of the global behavior of an operator is reduced to its local behavior, acting on a family of test functions indexed by the dyadic cubes. We present two versions of such results, in particular, treating square function operators whose kernels do not satisfy the standard Littlewood–Paley pointwise estimates. As an application of one version of the local theorem, we show how the solvability of the Kato problem (which was implicitly based on local theory) may be deduced from this general criterion.

Locations

Works That Cite This (11)

Action Title Year Authors
+ PDF Chat The method of layer potentials in<i>L<sup>p</sup></i>and endpoint spaces for elliptic operators with<i>L<sup>∞</sup></i>coefficients 2015 Steve Hofmann
Marius Mitrea
Andrew J. Morris
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ L2 Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström
+ PDF Chat Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2016 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ The Regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients 2013 Steve Hofmann
Carlos E. Kenig
Svitlana Mayboroda
Jill Pipher
+ Boundedness of single layer potentials associated to divergence form parabolic equations with complex coefficients 2015 Alejandro J. Castro
Kaj Nyström
Olow Sande
+ PDF Chat The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients 2014 Steve Hofmann
Carlos E. Kenig
Svitlana Mayboroda
Jill Pipher
+ PDF Chat The Dirichlet problem with BMO boundary data and almost-real coefficients 2015 Ariel Barton
+ $L^2$ Solvability of boundary value problems for divergence form parabolic equations with complex coefficients 2016 Kaj Nyström

Works Cited by This (53)

Action Title Year Authors
+ An $L^p$ -estimate for the gradient of solutions of second order elliptic divergence equations 1963 Norman G. Meyers
+ Singular Integrals and Differentiability Properties of Functions. 1971 Elias M. Stein
+ Weighted Norm Inequalities and Related Topics 1985 José Garcı́a-Cuerva
J.-L. Rubio de Francia
+ The local Tb theorem with rough test functions 2012 Tuomas Hytönen
Fëdor Nazarov
+ Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals 2002 Elias M. Stein
Timothy S Murphy
+ PDF Chat Square root problem for divergence operators and related topics 2018 Pascal Auscher
Philippe Tchamitchian
+ PDF Chat A T(b) theorem with remarks on analytic capacity and the Cauchy integral 1990 Michael Christ
+ PDF Chat Square function estimates and the 𝑇(𝑏) theorem 1990 Stephen Semmes
+ Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains 1984 Gregory C. Verchota
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim