Distribution regression model with a Reproducing Kernel Hilbert Space approach

Type: Article

Publication Date: 2019-09-03

Citations: 8

DOI: https://doi.org/10.1080/03610926.2019.1658782

Abstract

In this paper, we introduce a new distribution regression model for probability distributions. This model is based on a Reproducing Kernel Hilbert Space (RKHS) regression framework, where universal kernels are built using Wasserstein distances for distributions belonging to W 2 ($\Omega$) and $\Omega$ is a compact subspace of R. We prove the universal kernel property of such kernels and use this setting to perform regressions on functions. Different regression models are first compared with the proposed one on simulated functional data. We then apply our regression model to transient evoked otoascoutic emission (TEOAE) distribution responses and real predictors of the age.

Locations

  • Communication in Statistics- Theory and Methods - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Robust Kernel-based Distribution Regression 2021 Zhan Yu
Daniel W. C. Ho
Ding‐Xuan Zhou
+ PDF Chat Robust kernel-based distribution regression 2021 Zhan Yu
Daniel W. C. Ho
Zhongjie Shi
Ding‐Xuan Zhou
+ PDF Chat The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations 2019 Djihad Benelmadani
Karim Benhenni
Sana Louhichi
+ Regression models for functional data by reproducing kernel Hilbert spaces methods 2006 Cristian Preda
+ Coefficient-based Regularized Distribution Regression 2022 Yuan Mao
Lei Shi
Zheng-Chu Guo
+ PDF Chat Coefficient-based regularized distribution regression 2023 Yuan Mao
Lei Shi
Zheng-Chu Guo
+ General Framework for Nonlinear Functional Regression with Reproducing Kernel Hilbert Spaces 2009 Hachem Kadri
Emmanuel Duflos
Manuel Davy
Pierre‐Marie Preux
Stéphane Canu
+ The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations 2018 Djihad Benelmadani
Karim Benhenni
Sana Louhichi
+ The reproducing kernel Hilbert space approach in nonparametric regression problems with correlated observations 2018 Djihad Benelmadani
Karim Benhenni
Sana Louhichi
+ Reproducing Kernel Hilbert Spaces 2019 Ronald Christensen
+ PDF Chat Contribution to nonparametric regression estimation with general autocovariance error process and application to pharmacokinetics 2019 Djihad Benelmadani
+ Uniform Function Estimators in Reproducing Kernel Hilbert Spaces 2021 Paul Dommel
Alois Pichler
+ Uniform Function Estimators in Reproducing Kernel Hilbert Spaces 2021 Paul Dommel
Alois Pichler
+ Asymmetric Estimation for Varying-Coefficient Additive Model with Functional Response in Reproducing Kernel Hilbert Space 2025 Yi Liu
Wei Tu
Yanchun Bao
Bei Jiang
Linglong Kong
+ Reproducing Kernel Hilbert Spaces for Penalized Regression: A Tutorial 2012 Alvaro Nosedal-Sanchez
Curtis B. Storlie
Thomas C. M. Lee
Ronald Christensen
+ On reproducing kernel methods in functional statistics 2018 Beatriz Bueno Larraz
+ On a non-parametric estimator for a regression function from a Hilbert space 1995 P. S. Knopov
A. P. Knopov
+ PDF Chat Reproducing Kernel Functions 2018 Ali AkgĂŒl
Esra KarataƟ AkgĂŒl
+ PDF Chat Reproducing kernel Hilbert spaces 2019 Martin J. Wainwright
+ Functional regression with dependent error and missing observation in reproducing kernel Hilbert spaces 2023 Yanping Hu
Han‐Ying Liang