Robust Sparse Principal Component Analysis

Type: Article

Publication Date: 2011-01-01

Citations: 6

DOI: https://doi.org/10.2139/ssrn.1868107

Abstract

A method for principal component analysis is proposed that is sparse and robust at the same time. The sparsity delivers principal components that have loadings on a small number of variables, making them easier to interpret. The robustness makes the analysis resistant to outlying observations. The principal components correspond to directions that maximize a robust measure of the variance, with an additional penalty term to take sparseness into account. We propose an algorithm to compute the sparse and robust principal components. The method is applied on several real data examples, and diagnostic plots for detecting outliers and for selecting the degree of sparsity are provided. A simulation experiment studies the loss in statistical efficiency by requiring both robustness and sparsity.

Locations

  • SSRN Electronic Journal - View
  • Lirias (KU Leuven) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Robust Sparse Principal Component Analysis 2012 Christophe Croux
Peter Filzmoser
Heinrich Fritz
+ Robust sparse principal component analysis 2014 Christophe Croux
Peter Filzmoser
Heinrich Fritz
+ Sparse Principal Component Analysis: a Least Squares approximation approach 2014 Giovanni Maria Merola
+ PDF Chat A plug-in approach to sparse and robust principal component analysis 2015 Luca Greco
Alessio Farcomeni
+ PDF Chat Sparse Principal Component Analysis Based on Least Trimmed Squares 2019 Yixin Wang
Stefan Van Aelst
+ PDF Chat A Guide for Sparse PCA: Model Comparison and Applications 2021 Rosember Guerra–Urzola
Katrijn Van Deun
Juan C. Vera
Klaas Sijtsma
+ Sparse Principal Components Analysis: a Tutorial 2021 Giovanni Maria Merola
+ PDF Chat Sparse principal component regression with adaptive loading 2015 Shuichi Kawano
Hironori Fujisawa
Toyoyuki Takada
Toshihiko Shiroishi
+ Principal Component Analysis 2012 Petros Xanthopoulos
Pãnos M. Pardalos
Theodore B. Trafali̇s
+ PDF Chat Scalable Robust Sparse Principal Component Analysis 2024 Ling Xiao
P. D. Brooks
+ Regularizing the Eigenstructure 2013 Mohsen Pourahmadi
+ Robust Principal Component Analysis by Reverse Iterative Linear Programming 2016 Andrea Visentin
Steven Prestwich
Ş. Armağan Tarim
+ Comparing Classical and Robust Sparse PCA 2012 Valentin Todorov
Peter Filzmoser
+ Ensemble Principal Component Analysis 2023 Olga Dorabiala
Aleksandr Y. Aravkin
J. Nathan Kutz
+ ROBUST PRINCIPAL COMPONENT ANALYSIS 2014 Ayed R. A. Alanzi
+ PDF Chat Principal Component Analysis 2021 Felipe L. Gewers
Gustavo Rodrigues Ferreira
Henrique Ferraz de Arruda
Filipi N. Silva
César H. Comin
Diego R. Amancio
Luciano da Fontoura Costa
+ A Fast Algorithm for Sparse PCA and a New Sparsity Control Criteria. 2011 Yunlong He
Renato D. C. Monteiro
Haesun Park
+ PDF Chat Sparse Principal Component Analysis via Rotation and Truncation 2015 Zhenfang Hu
Gang Pan
Yueming Wang
Zhaohui Wu
+ PDF Chat Robust sparse principal component analysis: situation of full sparseness 2022 B. Barış Alkan
I. Ünaldi
+ Conditions for Robust Principal Component Analysis 2011 Michael Hornstein