Uniqueness of a Furstenberg system

Type: Article

Publication Date: 2021-01-20

Citations: 1

DOI: https://doi.org/10.1090/proc/15453

Abstract

Given a countable amenable group $G$, a Følner sequence $(F_N) \subseteq G$, and a set $E \subseteq G$ with $\bar {d}_{(F_N)}(E)=\limsup _{N \to \infty } \frac {|E \cap F_N|}{|F_N|}>0$, Furstenberg’s correspondence principle associates with the pair $(E,(F_N))$ a measure preserving system $\mathbb {X}=(X,\mathcal {B},\mu ,(T_g)_{g \in G})$ and a set $A \in \mathcal {B}$ with $\mu (A)=\bar {d}_{(F_N)}(E)$, in such a way that for all $r \in \mathbb {N}$ and all $g_1,\dots ,g_r \in G$ one has $\bar {d}_{(F_N)}(g_1^{-1}E \cap \dots \cap g_r^{-1}E)\geq \mu ((T_{g_1})^{-1}A \cap \dots \cap (T_{g_r})^{-1}A)$. We show that under some natural assumptions, the system $\mathbb {X}$ is unique up to a measurable isomorphism. We also establish variants of this uniqueness result for non-countable discrete amenable semigroups as well as for a generalized correspondence principle which deals with a finite family of bounded functions $f_1,\dots ,f_{\ell }: G \rightarrow \mathbb {C}$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Uniqueness of a Furstenberg system 2020 Vitaly Bergelson
Andreu Ferré Moragues
+ Uniqueness of a Furstenberg system 2020 Vitaly Bergelson
Andreu Ferré Moragues
+ PDF Chat Inverting the Furstenberg correspondence 2012 Jeremy Avigad
+ Juxtaposing $d^*$ and $\bar{d}$ 2020 Vitaly Bergelson
Andreu Ferré Moragues
+ Abstract viewpoint on Schonberg correspondence: the Haagerup property via approximating semigroups and their generators 2014 Adam Skalski
+ Inverting the Furstenberg correspondence 2011 Jeremy Avigad
+ Inverting the Furstenberg correspondence 2011 Jeremy Avigad
+ A Hunt-Stein Theorem for Amenable Semigroups 1991 James V. Bondar
+ An ergodic correspondence principle, invariant means and applications 2020 Vitaly Bergelson
Andreu Ferré Moragues
+ An ergodic correspondence principle, invariant means and applications 2020 Vitaly Bergelson
Andreu Ferré Moragues
+ Duality theorems for finite semigroups 1996 Gene Abrams
Claudia Menini
+ THE FINITE BASIS PROBLEM FOR FINITE SEMIGROUPS 2001 Mikhail V. Volkov
+ A conjugacy criterion for pure <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>E</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups 2010 Remus Floricel
+ Feynman formulae for Feller semigroups 2010 Ya. A. Butko
O. G. Smolyanov
René L. Schilling
+ SH-WEAK DUALITY OF SEMIGROUPS AND MINIMUM SEMI-GROUP OF SH-APPROXIMATION 2019 V. V. Dang
Natalya Dodonova
Svetlana Korabelshchikova
Boris Melnikov
+ PDF Chat Operator amenability of Fourier–Stieltjes algebras 2004 Volker Runde
Nico Spronk
+ PDF Chat An inverse of Furstenberg's correspondence principle and applications to van der Corput sets 2024 Saúl Rodríguez Martín
+ PDF Chat Green’s Relations in Finite Transformation Semigroups 2017 Lukas Fleischer
Manfred Kufleitner
+ ℬ-free sets and dynamics 2017 Aurelia Dymek
Stanisław Kasjan
Joanna Kułaga-Przymus
Mariusz Lemańczyk
+ Fixed point theory for amenable semigroups of various transformations 1971 渉 高橋