Endpoint $\ell^r$ improving estimates for prime averages

Type: Article

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.4310/mrl.2022.v29.n6.a6

Abstract

Let $ \Lambda $ denote von Mangoldt's function, and consider the averages \begin{align*} A_N f (x) &=\frac{1}{N}\sum_{1\leq n \leq N}f(x-n)\Lambda(n) . \end{align*} We prove sharp $ \ell ^{p}$-improving for these averages, and sparse bounds for the maximal function. The simplest inequality is that for sets $ F, G\subset [0,N]$ there holds \begin{equation*} N ^{-1} \langle A_N \mathbf 1_{F} , \mathbf 1_{G} \rangle \ll \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigl( \operatorname {Log} \frac{\lvert F\rvert \cdot \lvert G\rvert} { N ^2 } \Bigr) ^{t}, \end{equation*} where $ t=2$, or assuming the Generalized Riemann Hypothesis, $ t=1$. The corresponding sparse bound is proved for the maximal function $ \sup_N A_N \mathbf 1_{F}$. The inequalities for $ t=1$ are sharp. The proof depends upon the Circle Method, and an interpolation argument of Bourgain.

Locations

  • Mathematical Research Letters - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Endpoint $ \ell ^{r}$ improving estimates for Prime averages 2021 Michael T. Lacey
Hamed Mousavi
Yaghoub Rahimi
+ Averaging with the Divisor Function: $\ell^p$-improving and Sparse Bounds 2021 Christina Giannitsi
+ Averaging with the Divisor Function: $\ell^p$-improving and Sparse Bounds 2021 Christina Giannitsi
+ Averages Along the Primes: Improving and Sparse Bounds 2019 Rui Han
Ben Krause
Michael T. Lacey
Fan Yang
+ $\ell^p$-improving inequalities for Discrete Spherical Averages 2018 Robert Kesler
Michael T. Lacey
+ $\ell^p$-improving inequalities for Discrete Spherical Averages 2018 Robert Kesler
Michael T. Lacey
+ AVERAGING WITH THE DIVISOR FUNCTION: ℓp-IMPROVING AND SPARSE BOUNDS 2022 Christina Giannitsi
+ PDF Chat Averages along the square integers ℓp-improving and sparse inequalities 2021 Rui Han
Michael T. Lacey
Fan Yang
+ Improving and Maximal Inequalities for Primes in Progressions 2021 Christina Giannitsi
Michael T. Lacey
Hamed Mousavi
Yaghoub Rahimi
+ Sparse Bounds for Spherical Maximal Functions 2017 Michael T. Lacey
+ PDF Chat Averages Along the Primes: Improving and Sparse Bounds 2020 Rui Han
Ben Krause
Michael T. Lacey
Fan Yang
+ PDF Chat A variant of the prime number theorem 2021 Kui Liu
Jie Wu
Zhishan Yang
+ A variant of the prime number theorem 2021 Kui Liu
Jie Wu
Zhishan Yang
+ Sparse Bounds for Spherical Maximal Functions 2017 Michael T. Lacey
+ Quantitative $l^p$-improving for discrete spherical averages along the primes 2018 Theresa C. Anderson
+ Quantitative $l^p$-improving for discrete spherical averages along the primes 2018 Theresa C. Anderson
+ Higher uniformity of arithmetic functions in short intervals I. All intervals 2022 Kaisa Matomäki
Xuancheng Shao
Terence Tao
Joni Teräväinen
+ $L^p$-improving estimates for averages on polynomial curves 2008 Philip T. Gressman
+ $\ell^p$-improving for discrete spherical averages 2018 Kevin S. Hughes
+ Möbius function and primes: an identity factory with applications 2023 Olivier Ramaré
Sebastian Zuniga Alterman

Works That Cite This (0)

Action Title Year Authors