Weyl nodal-line surface half-metal in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CaFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>

Type: Article

Publication Date: 2021-05-07

Citations: 10

DOI: https://doi.org/10.1103/physrevb.103.195115

Abstract

Manipulating the spin degrees of freedom of electrons affords an excellent platform for exploring novel quantum states in condensed-matter physics and material science. Based on first-principles calculations and analysis of crystal symmetries, we propose a fully spin-polarized composite semimetal state, which is combined with the one-dimensional nodal lines and two-dimensional nodal surfaces, in the half-metal material CaFeO$_3$. In the nodal line-surface states, the Baguenaudier-like nodal lines feature six rings linked together, which are protected by the three independent symmetry operations:$\mathcal{PT}$, $\mathcal{M}_{y}$, and $\mathcal{\widetilde{M}}_{z}$. Near the Fermi level, the spin-polarized nodal surface states are guaranteed by the joint operation $\mathcal{T}\mathcal{S}_{2i}$ in the $k_{i(i=x,y,z)}=π$ plane. Furthermore, high-quality CaFeO$_3$ harbors ultra-clean energy dispersion, which is rather robust against strong triaxial compressional strain and correlation effect. The realization of the Weyl nodal line-surface half-metal presents great potential for spintronics applications with high speed and low power consumption.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Structure, phase stability, half-metallicity, and fully spin-polarized Weyl states in compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Na</mml:mi><mml:msub><mml:mi mathvariant="normal">V</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> : An example for topological spintronic material 2021 Tingli He
Xiaoming Zhang
Tie Yang
Ying Liu
Xuefang Dai
Guodong Liu
+ PDF Chat Nodal Line Spin-Gapless Semimetals and High-Quality Candidate Materials 2020 Run‐Wu Zhang
Zeying Zhang
Cheng‐Cheng Liu
Yugui Yao
+ PDF Chat Two-dimensional Weyl nodal-line semimetal in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>d</mml:mi><mml:mn>0</mml:mn></mml:msup></mml:math> ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">N</mml:mi></mml:math> monolayer with a high Curie temperature 2020 Lei Jin
Xiaoming Zhang
Ying Liu
Xuefang Dai
Xunan Shen
Liying Wang
Guodong Liu
+ Nodal Line Spin-gapless Semimetals and Materials Realization 2019 Run‐Wu Zhang
Zeying Zhang
Cheng‐Cheng Liu
Yugui Yao
+ PDF Chat Novel family of topological semimetals with butterflylike nodal lines 2021 Xiaoting Zhou
Chuang‐Han Hsu
Hugo Aramberri
Mikel Iraola
Cheng-Yi Huang
Juan L. Mañes
Maia G. Vergniory
Hsin Lin
Nicholas Kioussis
+ PDF Chat Photoemission Spectroscopic Evidence for the Dirac Nodal Line in the Monoclinic Semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>SrAs</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2020 Yekai Song
G. W. Wang
Shao‐Chun Li
Wan‐Ling Liu
Xiangle Lu
Zhengtai Liu
Zhuojun Li
Jinsheng Wen
Zhiping Yin
Zhonghao Liu
+ PDF Chat Engineering second-order nodal-line semimetals by breaking $\mathcal{PT}$ symmetry and periodic driving 2022 Ming-Jian Gao
Hong Wu
Jun‐Hong An
+ PDF Chat Drumhead surface states and topological nodal-line fermions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TlTaSe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2016 Guang Bian
Tay‐Rong Chang
Hao Zheng
Saavanth Velury
Su-Yang Xu
Titus Neupert
Ching‐Kai Chiu
Shin-Ming Huang
Daniel S. Sanchez
Ilya Belopolski
+ PDF Chat Multiple Dirac nodal lines in an in-plane anisotropic semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">TaNiTe</mml:mi><mml:mn>5</mml:mn></mml:msub></mml:math> 2021 Zhanyang Hao
Weizhao Chen
Yuan Wang
Jiayu Li
Xiao‐Ming Ma
Yu‐Jie Hao
Ruie Lu
Zecheng Shen
Zhicheng Jiang
Wan‐Ling Liu
+ PDF Chat Symmetry demanded topological nodal-line materials 2018 S. Y. Yang
Hao Yang
Elena Derunova
S. Parkin
Binghai Yan
Mazhar N. Ali
+ PDF Chat Tunable two-dimensional Dirac nodal nets 2018 Ding‐Fu Shao
Shu‐Hui Zhang
Xiaoqian Dang
Evgeny Y. Tsymbal
+ PDF Chat Almost ideal nodal-loop semimetal in monoclinic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="bold">CuTeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> material 2018 Si Li
Ying Liu
Botao Fu
Zhi‐Ming Yu
Shengyuan A. Yang
Yugui Yao
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ca</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">P</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>and other topological semimetals with line nodes and drumhead surface states 2016 Yang‐Hao Chan
Ching‐Kai Chiu
M. Y. Chou
Andreas P. Schnyder
+ PDF Chat Fully Spin-Polarized Nodal Loop Semimetals in Alkaline Metal Monochalcogenide Monolayers 2019 Xiaodong Zhou
Run‐Wu Zhang
Zeying Zhang
Da‐Shuai Ma
Wanxiang Feng
Yuriy Mokrousov
Yugui Yao
+ PDF Chat Weyl-loop half-metal in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>Li</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>FeO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> 2019 Cong Chen
Zhi‐Ming Yu
Si Li
Ziyu Chen
Xian‐Lei Sheng
Shengyuan A. Yang
+ PDF Chat Engineering second-order nodal-line semimetals by breaking <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetry and periodic driving 2023 Ming-Jian Gao
Hong Wu
Jun‐Hong An
+ Realization of a Type-II Nodal-Line Semimetal in Mg$_3$Bi$_2$ 2017 Tay-Rong Chang
I. Pletikosić
Tai Kong
Guang Bian
Angus Huang
Jonathan D. Denlinger
Satya Kushwaha
B. Sinković
Horng‐Tay Jeng
T. Valla
+ PDF Chat Topological semimetal to insulator quantum phase transition in the Zintl compounds<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">B</mml:mi><mml:msub><mml:mi mathvariant="normal">a</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi>X</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mi>Si</mml:mi><mml:mo>,</mml:mo><mml:mi>Ge</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> 2016 Ziming Zhu
Mingda Li
Ju Li
+ PDF Chat Node-surface and node-line fermions from nonsymmorphic lattice symmetries 2016 Qifeng Liang
Jian Zhou
Rui Yu
Zhi Wang
Hongming Weng
+ PDF Chat Magnetotransport properties of the single-crystalline nodal-line semimetal candidates<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Ca</mml:mi><mml:mi>T</mml:mi><mml:mi>X</mml:mi><mml:mo>(</mml:mo><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mtext>Ag</mml:mtext><mml:mo>,</mml:mo><mml:mtext>Cd</mml:mtext><mml:mo>;</mml:mo><mml:mi>X</mml:mi><mml:mo>=</mml:mo><mml:mtext>As</mml:mtext><mml:mo>,</mml:mo><mml:mtext>Ge</mml:mtext><mml:mo>)</mml:mo></mml:math> 2017 Eve Emmanouilidou
Bing Shen
Xiaoyu Deng
Tay‐Rong Chang
Aoshuang Shi
Gabriel Kotliar
Su-Yang Xu
Ni Ni

Works Cited by This (54)

Action Title Year Authors
+ PDF Chat Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates 2011 Xiangang Wan
Ari M. Turner
Ashvin Vishwanath
Sergey Y. Savrasov
+ PDF Chat Chern Semimetal and the Quantized Anomalous Hall Effect in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>HgCr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Se</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2011 Gang Xu
Hongming Weng
Zhijun Wang
Xi Dai
Zhong Fang
+ PDF Chat SCAN+rVV10: A promising van der Waals density functional 2015 Haowei Peng
Zeng-hui Yang
Jianwei Sun
John P. Perdew
+ PDF Chat Prediction of Weyl semimetal in orthorhombic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoTe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2015 Yan Sun
Shu-Chun Wu
Mazhar N. Ali
Claudia Felser
Binghai Yan
+ PDF Chat A topological Dirac insulator in a quantum spin Hall phase 2008 David Hsieh
Dong Qian
L. Andrew Wray
Y. Xia
Y. S. Hor
R. J. Cava
M. Zahid Hasan
+ PDF Chat Three-dimensional Dirac semimetal and quantum transport in Cd<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math>As<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2013 Zhijun Wang
Hongming Weng
Quansheng Wu
Xi Dai
Zhong Fang
+ PDF Chat Projector augmented-wave method 1994 Peter E. Blöchl
+ PDF Chat Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator 2013 Cui‐Zu Chang
Jinsong Zhang
Xiao Feng
Jie Shen
Zuocheng Zhang
Minghua Guo
Kang Li
Yunbo Ou
P. Wei
Li-Li Wang
+ PDF Chat High-temperature surface superconductivity in topological flat-band systems 2011 N. B. Kopnin
Tero T. Heikkilä
G. E. Volovik
+ PDF Chat Dirac semimetal and topological phase transitions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>A</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>Bi (<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>A</mml:mi><mml:mo>=</mml:mo><mml:mtext>Na</mml:mtext></mml:mrow></mml:math>, K, Rb) 2012 Zhijun Wang
Yan Sun
Xing‐Qiu Chen
Cesare Franchini
Gang Xu
Hongming Weng
Xi Dai
Zhong Fang