Bounds for sets with no polynomial progressions

Type: Article

Publication Date: 2020-01-01

Citations: 17

DOI: https://doi.org/10.1017/fmp.2020.11

Abstract

Abstract Let $P_1,\dots ,P_m\in \mathbb{Z} [y]$ be polynomials with distinct degrees, each having zero constant term. We show that any subset A of $\{1,\dots ,N\}$ with no nontrivial progressions of the form $x,x+P_1(y),\dots ,x+P_m(y)$ has size $|A|\ll N/(\log \log {N})^{c_{P_1,\dots ,P_m}}$ . Along the way, we prove a general result controlling weighted counts of polynomial progressions by Gowers norms.

Locations

  • Forum of Mathematics Pi - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat True complexity of polynomial progressions in finite fields 2021 Borys Kuca
+ PDF Chat Quantitative concatenation for polynomial box norms 2024 Noah Kravitz
Borys Kuca
James Leng
+ #P-complete counting problems 2019 István Miklós
+ PDF Chat Corners with polynomial side length 2024 Noah Kravitz
Borys Kuca
James Leng
+ Multidimensional polynomial patterns over finite fields: bounds, counting estimates and Gowers norm control 2023 Borys Kuca
+ PDF Chat Multidimensional polynomial patterns over finite fields: Bounds, counting estimates and Gowers norm control 2024 Borys Kuca
+ Unbounded expansion of polynomials and products 2023 Akshat Mudgal
+ On product sets of arithmetic progressions 2022 Max Wenqiang Xu
Yunkun Zhou
+ Narrow progressions in the primes 2014 Terence Tao
Tamar Ziegler
+ PDF Chat More on maximal line-free sets in $\mathbb{F}_p^n$ 2024 Jakob Führer
+ Growth Estimates in Positive Characteristic via Collisions 2015 Esen Aksoy Yazici
Thomas Brendan Murphy
Misha Rudnev
Ilya D. Shkredov
+ The Frobenius postage stamp problem, and beyond 2020 Andrew Granville
George Shakan
+ Growth Estimates in Positive Characteristic via Collisions 2015 Esen Aksoy Yazici
Brendan Murphy
Misha Rudnev
Ilya D. Shkredov
+ A Quantitative Bound For Szemerédi's Theorem for a Complexity One Polynomial Progression over $\mathbb{Z}/N\mathbb{Z}$ 2022 James Leng
+ Polynomials and Primes in Generalized Arithmetic Progressions (Revised Version) 2013 Ernie Croot
Neil Lyall
Alex Rice
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Progression-free sets in Z_4^n are exponentially small 2016 Ernie Croot
Vsevolod F. Lev
Péter Pál Pach
+ Four-term progression free sets with three-term progressions in all large subsets 2019 Cosmin Pohoata
Oliver Roche‐Newton
+ On restricted arithmetic progressions over finite fields 2012 Brian Cook
Ákos Magyar
+ On restricted arithmetic progressions over finite fields 2010 Brian J. Cook
Ákos Magyar