FACTORIZATION LENGTH DISTRIBUTION FOR AFFINE SEMIGROUPS III: MODULAR EQUIDISTRIBUTION FOR NUMERICAL SEMIGROUPS WITH ARBITRARILY MANY GENERATORS

Type: Article

Publication Date: 2021-01-12

Citations: 2

DOI: https://doi.org/10.1017/s1446788720000476

Abstract

Abstract For numerical semigroups with a specified list of (not necessarily minimal) generators, we describe the asymptotic distribution of factorization lengths with respect to an arbitrary modulus. In particular, we prove that the factorization lengths are equidistributed across all congruence classes that are not trivially ruled out by modular considerations.

Locations

  • Journal of the Australian Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Factorization length distribution for affine semigroups III: modular equidistribution for numerical semigroups with arbitrarily many generators 2020 Stephan Ramon Garcia
Mohamed Omar
Christopher O’Neill
Timothy Wesley
+ Factorization length distribution for affine semigroups III: modular equidistribution for numerical semigroups with arbitrarily many generators 2020 Stephan Ramon Garcia
Mohamed Omar
Christopher O’Neill
Timothy Wesley
+ Factorization length distribution for affine semigroups II: asymptotic behavior for numerical semigroups with arbitrarily many generators 2019 Stephan Ramon Garcia
Mohamed Omar
Christopher O’Neill
Samuel Yih
+ Factorization length distribution for affine semigroups II: Asymptotic behavior for numerical semigroups with arbitrarily many generators 2020 Stephan Ramon Garcia
Mohamed Omar
Christopher O’Neill
Samuel Yih
+ Factorization length distribution for affine semigroups II: asymptotic behavior for numerical semigroups with arbitrarily many generators 2019 Stephan Ramon Garcia
Mohamed Omar
Christopher O’Neill
Samuel Yih
+ Factorization length distribution for affine semigroups IV: a geometric approach to weighted factorization lengths in three-generator numerical semigroups 2021 Stephan Ramon Garcia
Christopher O’Neill
Gabe Udell
+ PDF Chat Factorization length distribution for affine semigroups IV: a geometric approach to weighted factorization lengths in three-generator numerical semigroups 2022 Stephan Ramon Garcia
Christopher O’Neill
Gabe Udell
+ Factorization length distribution for affine semigroups I: numerical semigroups with three generators 2018 Stephan Ramon Garcia
Christopher O’Neill
Samuel Yih
+ Factorization length distribution for affine semigroups I: numerical semigroups with three generators 2018 Stephan Ramon Garcia
Christopher O’Neill
Samuel Yih
+ PDF Chat Factorization length distribution for affine semigroups I: Numerical semigroups with three generators 2019 Stephan Ramon Garcia
Christopher O’Neill
Samuel Yih
+ Length density and numerical semigroups 2021 Cole Brower
Scott Chapman
Travis Kulhanek
Joseph M. McDonough
Christopher O’Neill
Vody Pavlyuk
Vadim Ponomarenko
+ PDF Chat Some asymptotic results on $p$-lengths of factorizations for numerical semigroups and arithmetical congruence monoids 2024 S. Jonathan Chapman
Eli B. Dugan
Shadi Gaskari
Emi Lycan
Sarah Mendoza De La Cruz
Christopher O’Neill
Vadim Ponomarenko
+ PDF Chat Length Density and Numerical Semigroups 2022 Cole Brower
Scott T. Chapman
Travis Kulhanek
Joseph McDonough
Christopher O’Neill
Vody Pavlyuk
Vadim Ponomarenko
+ PDF Chat AFFINE SEMIGROUPS HAVING A UNIQUE BETTI ELEMENT 2012 Pedro A. García-Sánchez
Ignacio Ojeda
J. C. Rosales
+ Opened modular numerical semigroups 2006 J. C. Rosales
J.M. Urbano-Blanco
+ Modular translations of numerical semigroups 2012 Aureliano M. Robles-Pérez
J. C. Rosales
+ Modular retractions of numerical semigroups 2013 Aureliano M. Robles-Pérez
J. C. Rosales
+ PDF Chat On parametrized families of numerical semigroups 2020 Franklin Kerstetter
Christopher O’Neill
+ Non-unique factorizations in block semigroups and arithmetical applications 1992 Alfred Geroldinger
Franz Halter‐Koch
+ Beyond Coins, Stamps, and Chicken McNuggets: an Invitation to Numerical Semigroups 2019 S. C. Chapman
Rebecca García
Christopher O’Neill