Type: Article
Publication Date: 2021-08-24
Citations: 3
DOI: https://doi.org/10.3906/mat-2105-40
This work represents a systematic computational study of the distribution of the Fourier coefficients of cuspidal Hecke eigenforms of level $\Gamma_0(4)$ and half-integral weights. Based on substantial calculations, the question is raised whether the distribution of normalised Fourier coefficients with bounded indices can be approximated by a generalised Gaussian distribution. Moreover, it is argued that the apparent symmetry around zero of the data lends strong evidence to the Bruinier-Kohnen Conjecture on the equidistribution of signs and even suggests the strengthening that signs and absolute values are distributed independently.