Pressure-induced transition from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow /><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mrow /><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> states in <mml:math xmlns:mml="http://…

Type: Article

Publication Date: 2021-02-03

Citations: 5

DOI: https://doi.org/10.1103/physrevb.103.l081101

Abstract

The spin-orbit entangled (SOE) Jeff-state has been a fertile ground to study novel quantum phenomena. Contrary to the conventional weakly correlated Jeff=1/2 state of 4d and 5d transition metal compounds, the ground state of CuAl2O4 hosts a Jeff=1/2 state with a strong correlation of Coulomb U. Here, we report that surprisingly Cu2+ ions of CuAl2O4 overcome the otherwise usually strong Jahn-Teller distortion and instead stabilize the SOE state, although the cuprate has relatively small spin-orbit coupling. From the x-ray absorption spectroscopy and high-pressure x-ray diffraction studies, we obtained definite evidence of the Jeff=1/2 state with a cubic lattice at ambient pressure. We also found the pressure-induced structural transition to a compressed tetragonal lattice consisting of the spin-only S=1/2 state for pressure higher than Pc=8 GPa. This phase transition from the Mott insulating Jeff=1/2 to the S=1/2 states is a unique phenomenon and has not been reported before. Our study offers a rare example of the SOE Jeff-state under strong electron correlation and its pressure-induced transition to the S=1/2 state.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Anomalous High-Pressure Jahn-Teller Behavior in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>CuWO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2012 Javier Ruiz‐Fuertes
A. Segura
Fernando Rodríguez
Daniel Errandonea
Marta N. Sanz‐Ortiz
+ PDF Chat Modification of structural disorder by hydrostatic pressure in the superconducting cuprate <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">YBa</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Cu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>6.73</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2018 Hai Huang
Hoyoung Jang
M. Fujita
Terukazu Nishizaki
Yu-Chen Lin
Jing Wang
Jianjun Ying
Jesse S. Smith
Curtis Kenney‐Benson
Guoyin Shen
+ PDF Chat Structural stability of CuAl<sub>2</sub>O<sub>4</sub> under pressure 2020 P. A. Agzamova
Alexei А. Belik
S. V. Streltsov
+ PDF Chat Estimation of the on-site Coulomb potential and covalent state in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>La</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>CuO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> by muon spin rotation and density functional theory calculations 2022 Muhammad Redo Ramadhan
Budi Adiperdana
Irwan Ramli
Dita Puspita Sari
Anita Eka Putri
Utami Widyaiswari
Harison Rozak
Wan Nurfadhilah Zaharim
Azwar Manaf
Budhy Kurniawan
+ PDF Chat Tuning the structure of the skyrmion lattice system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Cu</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi>OSeO</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> under pressure 2020 Srishti Pal
Pallavi Malavi
Shashank Chaturvedi
Subhadip Das
S. Karmakar
D. V. S. Muthu
Umesh V. Waghmare
A. K. Sood
+ PDF Chat Pressure-induced creation and annihilation of Weyl points in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>d</mml:mi></mml:msub><mml:mtext>−</mml:mtext><mml:msub><mml:mrow><mml:mi>Mo</mml:mi></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">W</mml:mi></mml:mrow><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>Te</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:… 2022 Bishnu Karki
Bishnu Prasad Belbase
Gang Bahadur Acharya
Sobhit Singh
Madhav Prasad Ghimire
+ PDF Chat Structural transition, metallization, and superconductivity in quasi-two-dimensional layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pd</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> under compression 2020 Wen Lei
Wei Wang
Xing Ming
Shengli Zhang
Gang Tang
Xiaojun Zheng
Huan Li
Carmine Autieri
+ PDF Chat High-pressure structural phase transitions in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>CuWO</mml:mtext></mml:mrow><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:math> 2010 Javier Ruiz‐Fuertes
Daniel Errandonea
R. Lacomba-Perales
A. Segura
J. González
Fernando Rodríguez
F. J. Manjón
Sujit K. Ray
P. Rodríguez‐Hernández
Alfonso Muñoz
+ PDF Chat Pressure-induced new magnetic phase in Tl(Cu0.985Mg0.015)Cl3probed by muon spin rotation 2010 T. Suzuki
Isao Watanabe
Fumiko Yamada
Motoki Yamada
Yasuyuki Ishii
Takayuki Kawamata
T. Goto
Hidekazu Tanaka
+ PDF Chat Reemergence of superconductivity in pressurized quasi-one-dimensional superconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">K</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Mo</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>As</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> 2021 Cheng Huang
Jing Guo
Kang Zhao
Fan Cui
Shengshan Qin
Qing-Ge Mu
Yazhou Zhou
Shu Cai
Chongli Yang
Sijin Long
+ PDF Chat Giant Electron-Phonon Anomaly in Doped<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>La</mml:mtext></mml:mrow><mml:mtext>2</mml:mtext></mml:msub><mml:msub><mml:mrow><mml:mtext>CuO</mml:mtext></mml:mrow><mml:mtext>4</mml:mtext></mml:msub></mml:mrow></mml:math>and Other Cuprates 2010 D. Reznik
+ PDF Chat Pressure-induced phase transition and superconductivity in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">YBa</mml:mi></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi></mml:mrow><mml:mn>4</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mn>8</mml:mn></mml:msub></mml:math> 2014 S. M. Souliou
Alaska Subedi
Yujie Song
C. T. Lin
K. Syassen
B. Keimer
M. Le Tacon
+ PDF Chat Theoretical evidence of spin-orbital-entangled <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math> state in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi></mml:mrow></mml:math> transition metal oxide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>… 2019 Choong H. Kim
Santu Baidya
Hwanbeom Cho
V. V. Gapontsev
S. V. Streltsov
D. I. Khomskiǐ
Je‐Geun Park
Ara Go
Hosub Jin
+ PDF Chat Universal metastability of the low-spin state in Co<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mrow><mml:mn>2</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:math>systems: Non-Mott type pressure-induced spin-state transition in CoCl<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math> 2014 Bongjae Kim
Kyoo Kim
B. I. Min
+ PDF Chat Spin gap in malachite Cu<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>(OH)<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>CO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math>and its evolution under pressure 2013 Stefan Lebernegg
Alexander A. Tsirlin
Oleg Janson
H. Rösner
+ PDF Chat Quasi-uniaxial pressure induced superconductivity in the stoichiometric compound <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>UTe</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> 2022 Chongli Yang
Jing Guo
Shu Cai
Yazhou Zhou
V. A. Sidorov
Cheng Huang
Sijin Long
Youguo Shi
Qiuyun Chen
Shiyong Tan
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>SrCu</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>BO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math> under pressure: A first-principles study 2020 Danis I. Badrtdinov
Alexander A. Tsirlin
В. В. Мазуренко
Frédéric Mila
+ PDF Chat Pressure-induced nontrivial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> band topology and superconductivity in the transition metal chalcogenide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Ni</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>5</mml:mn></mml:msub></mml:mrow></mml:math> 2023 Haiyang Yang
Yonghui Zhou
Shuyang Wang
Jing Wang
Xuliang Chen
Lili Zhang
Chenchao Xu
Zhaorong Yang
+ PDF Chat Pressure-induced superconductivity in quasi-one-dimensional semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>PdSe</mml:mi><mml:mn>6</mml:mn></mml:msub></mml:mrow></mml:math> 2022 Haiyang Yang
Yonghui Zhou
Liangyu Li
Zheng Chen
Zhuyi Zhang
Shuyang Wang
Jing Wang
Xuliang Chen
Chao An
Ying Zhou
+ PDF Chat Pressure-induced insulating state in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mo>(</mml:mo><mml:mi mathvariant="normal">L</mml:mi><mml:mi mathvariant="normal">a</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">S</mml:mi><mml:mi mathvariant="normal">r</mml:mi><mml:mo>)</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CoO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> 2004 R. Lengsdorf
M. Ait-Tahar
S. S. Saxena
M. Ellerby
D. I. Khomskii
H. Micklitz
T. Lorenz
M. M. Abd-Elmeguid

Works Cited by This (28)

Action Title Year Authors
+ PDF Chat Novel<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>J</mml:mi><mml:mi>eff</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Mott State Induced by Relativistic Spin-Orbit Coupling in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>Sr</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>IrO</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> 2008 Beom Joon Kim
Hosub Jin
S. J. Moon
J.-Y. Kim
B.-G. Park
C. S. Leem
Jaejun Yu
T. W. Noh
Changsoo Kim
S.-J. Oh
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi><mml:mo>−</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="normal">RuCl</mml:mi></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math>: A spin-orbit assisted Mott insulator on a honeycomb lattice 2014 K. W. Plumb
J. P. Clancy
Luke J. Sandilands
V. Vijay Shankar
Yongfeng Hu
Kenneth S. Burch
Hae‐Young Kee
Young‐June Kim
+ PDF Chat Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces 2008 John P. Perdew
Adrienn Ruzsinszky
Gábor I. Csonka
Oleg A. Vydrov
Gustavo E. Scuseria
Lucian A. Constantin
Xiaolan Zhou
Kieron Burke
+ PDF Chat Experimental Realization of a Spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:math>Triangular-Lattice Heisenberg Antiferromagnet 2012 Yutaka Shirata
Hidekazu Tanaka
Akira Matsuo
Koichi Kindo
+ PDF Chat Spin-orbit coupling in iridium-based 5<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi></mml:math>compounds probed by x-ray absorption spectroscopy 2012 J. P. Clancy
Ning Chen
Chang‐Yong Kim
Wenwei Chen
K. W. Plumb
Byung‐Chul Jeon
Tae Won Noh
Young‐June Kim
+ PDF Chat Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models 2009 George Jackeli
Giniyat Khaliullin
+ PDF Chat Strong Correlations from Hund’s Coupling 2011 Antoine Georges
Luca de’ Medici
Jernej Mravlje
+ PDF Chat Covalent bonds against magnetism in transition metal compounds 2016 S. V. Streltsov
D. I. Khomskiǐ
+ PDF Chat Pressure dependence of the structure and electronic properties of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Sr</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Ir</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>7</mml:mn></mml:msub></mml:mrow></mml:math> 2016 C. Donnerer
Zhijing Feng
J. G. Vale
S. N. Andreev
I. V. Solovyev
Emily C. Hunter
Michael Hanfland
Robin Perry
H. M. Rønnow
M. I. McMahon
+ PDF Chat Calculating branching ratio and spin-orbit coupling from first principles: A formalism and its application to iridates 2016 Jae-Hoon Sim
Hongkee Yoon
Sang Hyeon Park
Myung Joon Han