Signs of Fourier coefficients of half-integral weight modular forms

Type: Article

Publication Date: 2021-01-09

Citations: 12

DOI: https://doi.org/10.1007/s00208-020-02123-0

Abstract

Abstract Let g be a Hecke cusp form of half-integral weight, level 4 and belonging to Kohnen’s plus subspace. Let c ( n ) denote the n th Fourier coefficient of g , normalized so that c ( n ) is real for all $$n \ge 1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . A theorem of Waldspurger determines the magnitude of c ( n ) at fundamental discriminants n by establishing that the square of c ( n ) is proportional to the central value of a certain L -function. The signs of the sequence c ( n ) however remain mysterious. Conditionally on the Generalized Riemann Hypothesis, we show that $$c(n) &lt; 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> <mml:mo>&lt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> and respectively $$c(n) &gt; 0$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>c</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> holds for a positive proportion of fundamental discriminants n . Moreover we show that the sequence $$\{c(n)\}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>c</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> where n ranges over fundamental discriminants changes sign a positive proportion of the time. Unconditionally, it is not known that a positive proportion of these coefficients are non-zero and we prove results about the sign of c ( n ) which are of the same quality as the best known non-vanishing results. Finally we discuss extensions of our result to general half-integral weight forms g of level 4 N with N odd, square-free.

Locations

  • Mathematische Annalen - View - PDF

Similar Works

Action Title Year Authors
+ Signs of Fourier coefficients of half-integral weight modular forms 2019 Stephen Lester
Maksym Radziwiłł
+ Signs of Fourier coefficients of half-integral weight modular forms. 2019 Stephen Lester
Maksym Radziwiłł
+ Sign changes of coefficients of half integral weight modular forms 2007 Jan Hendrik Bruinier
Winfried Kohnen
+ PDF Chat SIGN OF FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF‐INTEGRAL WEIGHT 2016 Yuk-Kam Lau
Emmanuel Royer
Jie Wu
+ PDF Chat Fourier coefficients of cusp forms of half-integral weight 2012 Winfried Kohnen
Yuk-Kam Lau
Jie Wu
+ PDF Chat Large sums of Hecke eigenvalues of holomorphic cusp forms 2018 Youness Lamzouri
+ Sign changes of coefficients of half-integral weight Hecke eigenforms 2023 Chenran Xu
+ Sign changes of fourier coefficients of holomorphic cusp forms at norm form arguments 2023 Alexander P. Mangerel
+ Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms 2017 Mezroui Soufiane
+ Sign changes of a product of Dirichlet character and Fourier coefficients of half integral weight modular forms 2017 Mezroui Soufiane
+ The Sign of Fourier Coefficients of Half-Integral Weight Cusp Forms 2011 Thomas A. Hulse
Eren Mehmet Kıral
Chan Ieong Kuan
Li-Mei Lim
+ Sign Changes of Fourier Coefficients of Cusp Forms at Norm Form Arguments 2022 Alexander P. Mangerel
+ ON THE FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT 2013 YoungJu Choie
Winfried Kohnen
+ On signs of Fourier coefficients of Hecke-Maass cusp forms on 𝐺𝐿₃ 2023 Jesse Jääsaari
+ A Note On Signs Of Fourier Coefficients Of Two Cusp Forms 2016 Soumyarup Banerjee
+ A Note On Signs Of Fourier Coefficients Of Two Cusp Forms 2016 Soumyarup Banerjee
+ PDF Chat Large Fourier coefficients of half-integer weight modular forms 2024 Sanoli Gun
Winfried Kohnen
K. Soundararajan
+ Large Fourier coefficients of half-integer weight modular forms 2020 Sanoli Gun
Winfried Kohnen
K. Soundararajan
+ PDF Chat On the signs of Fourier coefficients of Hilbert cusp forms 2020 Ritwik Pal
+ Fourier Coefficients of Half-Integral Weight Modular Forms Modulo &amp;#8467 1998 Ken Ono
Christopher Skinner