The effective potential of an <i>M</i>-matrix

Type: Article

Publication Date: 2021-04-01

Citations: 10

DOI: https://doi.org/10.1063/5.0042629

Abstract

In the presence of a confining potential $V$, the eigenfunctions of a continuous Schr\"odinger operator $-\Delta +V$ decay exponentially with the rate governed by the part of $V$ which is above the corresponding eigenvalue; this can be quantified by a method of Agmon. Analogous localization properties can also be established for the eigenvectors of a discrete Schr\"odinger matrix. This note shows, perhaps surprisingly, that one can replace a discrete Schr\"odinger matrix by \emph{any} real symmetric $Z$-matrix and still obtain eigenvector localization estimates. In the case of a real symmetric non-singular $M$-matrix $A$ (which is a situation that arises in several contexts, including random matrix theory and statistical physics), the \emph{landscape function} $u = A^{-1} 1$ plays the role of an effective potential of localization. Starting from this potential, one can create an Agmon-type distance function governing the exponential decay of the eigenfunctions away from the "wells" of the potential, a typical eigenfunction being localized to a single such well.

Locations

  • Journal of Mathematical Physics - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Mathematical Physics - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Mathematical Physics - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Localization for a Matrix-valued Anderson Model 2009 Hakim Boumaza
+ The landscape function on $\mathbb R^d$ 2023 Guy David
Antoine Gloria
Svitlana Mayboroda
+ The Class of Inverse $M$-Matrices Associated to Random Walks 2013 Claude Dellacherie
Servet Martı́nez
Jaime San Martı́n
+ PDF Chat Linear statistics and pushed Coulomb gas at the edge of <i>β</i> -random matrices: Four paths to large deviations 2019 Alexandre Krajenbrink
Pierre Le Doussal
+ PDF Chat One-dimensional Discrete Dirac Operators in a Decaying Random Potential I: Spectrum and Dynamics 2020 Olivier Bourget
Gregorio R. Moreno Flores
Amal Taarabt
+ Absolutely Continuous Spectrum for Random Schr 2011 Abel Klein
Christian Sadel
+ The continuous Anderson hamiltonian in dimension two 2015 Romain Allez
Khalil Chouk
+ Random matrix theory of effective interactions 1997 Calvin M. Johnson
+ PDF Chat Random Matrices in Non-confining Potentials 2015 Romain Allez
Laure Dumaz
+ Random matrices in non-confining potentials 2014 Laure Dumaz
+ PDF Chat Absolutely continuous spectrum for random Schrödinger operators on the Bethe strip 2011 Abel Klein
Christian Sadel
+ PDF Chat Report on 2001.06493v1 2020 Alexander Burin
+ PDF Chat Report on 2001.06493v1 2020 Anton Kutlin
Ivan M. Khaymovich
+ PDF Chat Delocalization of a general class of random block Schr\"odinger operators 2025 Fan Yang
Jun Yin
+ Continual limit in the Hermitian matrix model Ф6 1995 A. R. Its
A. V. Kitaev
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ Fluctuations of eigenvalues of matrix models and their applications 2010 Thomas Kriecherbauer
Mariya Shcherbina
+ Probabilistic Representations of Ordered Exponentials: Vector-Valued Schrödinger Semigroups and the Combinatorics of Anderson Localization 2023 Pierre Yves Gaudreau Lamarre
+ Integral Operators in Random Matrix Theory 2011 Harold Widom