An aperiodic set of 11 Wang tiles

Type: Article

Publication Date: 2021-01-11

Citations: 48

DOI: https://doi.org/10.19086/aic.18614

Abstract

We present a new aperiodic tileset containing 11 Wang tiles on 4 colors, and we show that this tileset is minimal, in the sense that no Wang set with either fewer than 11 tiles or fewer than 4 colors is aperiodic. This gives a definitive answer to the problem raised by Wang in 1961.

Locations

  • Advances in Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Yet Another Aperiodic Tile Set 2010 Victor Poupet
+ Yet another aperiodic tile set 2010 Victor Poupet
+ PDF Chat A self-similar aperiodic set of 19 Wang tiles 2018 Sébastien Labbé
+ PDF Chat Yet Another Aperiodic Tile Set 2010 Victor Poupet
+ Lots of aperiodic sets of tiles 2018 Chaim Goodman-Strauss
+ PDF Chat A strongly aperiodic set of tiles in the hyperbolic plane 2004 Chaim Goodman-Strauss
+ Transitive perfect colorings of the non-regular Archimedean tilings 2015 Junmar Gentuya
René P. Felix
+ Transitive perfect colorings of the non-regular Archimedean tilings 2015 Junmar Gentuya
René P. Felix
+ An aperiodic hexagonal tile 2011 Joshua E. S. Socolar
Joan M. Taylor
+ Planar aperiodic tile sets: from Wang tiles to the Hat and Spectre monotiles 2023 Tinka Bruneau
Michael F. Whittaker
+ Deterministic Aperiodic Tile Sets 1999 Jarkko Kari
Panos Papasoglu
+ PDF Chat Fixed Parameter Undecidability for Wang Tilesets 2012 Emmanuel Jeandel
Nicolas Rolin
+ Yet Another Proof of the Aperiodicity of Robinson Tiles. 2017 Thomas Fernique
+ Nonemptiness problems of Wang tiles with three colors 2014 Hung‐Hsun Chen
Wen-Guei Hu
De-Jan Lai
Song-Sun Lin
+ A hierarchical strongly aperiodic set of tiles in the hyperbolic plane 2009 Chaim Goodman-Strauss
+ Aperiodic tilings with one prototile and low complexity atlas matching rules 2010 David F. Fletcher
+ Aperiodic tilings with one prototile and low complexity atlas matching rules 2010 David Fletcher
+ Lots of Aperiodic Sets of Tiles 2016 Chaim Goodman-Strauss
+ An aperiodic monotile for the tiler 2022 Vincent Van Dongen
+ Lots of Aperiodic Sets of Tiles 2016 Chaim Goodman-Strauss

Works That Cite This (37)

Action Title Year Authors
+ Three characterizations of a self-similar aperiodic 2-dimensional subshift 2020 Sébastien Labbé
+ A strongly aperiodic shift of finite type on the discrete Heisenberg group using Robinson tilings 2020 Ayşe Şahı̇n
Michael Schraudner
Ilie Ugarcovici
+ PDF Chat Necessary conditions for tiling finitely generated amenable groups 2020 Benjamin Hellouin de Ménibus
Hugo Maturana Cornejo
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="sans-serif">NP</mml:mi></mml:math>-completeness of the game Kingdomino<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mtext mathvariant="italic">TM</mml:mtext></mml:mrow></mml:msup></mml:math> 2020 Viet-Ha Nguyen
Kévin Perrot
Mathieu Vallet
+ A Strongly Aperiodic Shift Of Finite Type For The Discrete Heisenberg Group 2014 Ayşe Şahı̇n
Michael Schraudner
Ilie Ugarcovici
+ PDF Chat Wang tiling aided statistical determination of the Representative Volume Element size of random heterogeneous materials 2017 Martin Doškář
Jan Zeman
Daniela Jarušková
Jan Novák
+ PDF Chat A Numeration System for Fibonacci-Like Wang Shifts 2021 Sébastien Labbé
Jana Lepšová
+ PDF Chat Substitutive Structure of Jeandel–Rao Aperiodic Tilings 2019 Sébastien Labbé
+ PDF Chat A self-similar aperiodic set of 19 Wang tiles 2018 Sébastien Labbé
+ PDF Chat Level-set Based Design of Wang Tiles for Modelling Complex Microstructures 2020 Martin Doškář
Jan Zeman
D. Rypl
Jan Novák