Stochastic PDEs via convex minimization

Type: Article

Publication Date: 2020-10-14

Citations: 8

DOI: https://doi.org/10.1080/03605302.2020.1831017

Abstract

We prove the applicability of the Weighted Energy-Dissipation (WED) variational principle [50] to nonlinear parabolic stochastic partial differential equations in abstract form. The WED principle consists in the minimization of a parameter-dependent convex functional on entire trajectories. Its unique minimizers correspond to elliptic-in-time regularizations of the stochastic differential problem. As the regularization parameter tends to zero, solutions of the limiting problem are recovered. This in particular provides a direct approch via convex optimization to the approximation of nonlinear stochastic partial differential equations.

Locations

  • Communications in Partial Differential Equations - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Virtual Community of Pathological Anatomy (University of Castilla La Mancha) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Doubly Nonlinear Equations as Convex Minimization 2014 Goro Akagi
Ulisse Stefanelli
+ PDF Chat Weighted Energy-Dissipation approach to semilinear gradient flows with state-dependent dissipation 2024 Goro Akagi
Ulisse Stefanelli
Riccardo Voso
+ The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems 2018 Matthias Liero
Stefano Melchionna
+ The Energy-Dissipation Principle for stochastic parabolic equations 2021 Luca Scarpa
Ulisse Stefanelli
+ Weighted Energy-Dissipation principle for gradient flows in metric spaces 2018 Riccarda Rossi
Giuseppe Savaré
Antonio Segatti
Ulisse Stefanelli
+ Weighted Energy-Dissipation principle for gradient flows in metric spaces 2018 Riccarda Rossi
Giuseppe Savaré
Antonio Segatti
Ulisse Stefanelli
+ PDF Chat The Weighted Inertia-Energy-Dissipation Principle 2024 Ulisse Stefanelli
+ The weighted energy-dissipation principle and evolutionary Γ-convergence for doubly nonlinear problems 2017 Matthias Liero
Stefano Melchionna
+ PDF Chat Stochastic Inertial Dynamics Via Time Scaling and Averaging 2024 Rodrigo Maulen-Soto
Jalal Fadili
Hédy Attouch
Peter Ochs
+ A variational principle for nonpotential perturbations of gradient flows of nonconvex energies 2016 Stefano Melchionna
+ PDF Chat Optimal control of gradient flows via the Weighted Energy-Dissipation method 2024 T. Fukao
Ulisse Stefanelli
Riccardo Voso
+ PDF Chat Tikhonov Regularization for Stochastic Non-Smooth Convex Optimization in Hilbert Spaces 2024 Rodrigo Maulen-Soto
Jalal Fadili
Hédy Attouch
+ A variational principle for nonpotential perturbations of gradient flows of nonconvex energies 2016 Stefano Melchionna
+ A variational principle for nonpotential perturbations of gradient flows of nonconvex energies 2016 Stefano Melchionna
+ A variational approach to stochastic minimization of convex functionals 2016 Miroslav Bačák
+ A variational approach to stochastic minimization of convex functionals 2016 Miroslav Bačák
+ A variational approach to stochastic minimization of convex functionals 2016 Miroslav Bačák
+ PDF Chat Weighted energy-dissipation functionals for gradient flows 2009 Alexander Mielke
Ulisse Stefanelli
+ An Stochastic Differential Equation Perspective on Stochastic Convex Optimization 2024 M. Rodrigo
Jalal Fadili
Hédy Attouch
+ Weighted energy-dissipation functionals for doubly nonlinear evolution 2011 Goro Akagi
Ulisse Stefanelli