Type: Article
Publication Date: 2020-10-14
Citations: 8
DOI: https://doi.org/10.1080/03605302.2020.1831017
We prove the applicability of the Weighted Energy-Dissipation (WED) variational principle [50] to nonlinear parabolic stochastic partial differential equations in abstract form. The WED principle consists in the minimization of a parameter-dependent convex functional on entire trajectories. Its unique minimizers correspond to elliptic-in-time regularizations of the stochastic differential problem. As the regularization parameter tends to zero, solutions of the limiting problem are recovered. This in particular provides a direct approch via convex optimization to the approximation of nonlinear stochastic partial differential equations.