Is Pessimism Provably Efficient for Offline RL

Type: Preprint

Publication Date: 2020-12-30

Citations: 23

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Is Pessimism Provably Efficient for Offline RL? 2020 Ying Jin
Zhuoran Yang
Zhaoran Wang
+ Pessimistic Q-Learning for Offline Reinforcement Learning: Towards Optimal Sample Complexity 2022 Laixi Shi
Gen Li
Yuting Wei
Yuxin Chen
Yuejie Chi
+ VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation 2023 Thanh Nguyen-Tang
Raman Arora
+ Pessimism in the Face of Confounders: Provably Efficient Offline Reinforcement Learning in Partially Observable Markov Decision Processes 2022 Miao Lu
Yifei Min
Zhaoran Wang
Zhuoran Yang
+ Near-optimal Offline Reinforcement Learning with Linear Representation: Leveraging Variance Information with Pessimism 2022 Ming Yin
Yaqi Duan
Mengdi Wang
Yuxiang Wang
+ Towards Instance-Optimal Offline Reinforcement Learning with Pessimism 2021 Minghao Yin
Yu-Xiang Wang
+ PDF Chat Optimistic Model Rollouts for Pessimistic Offline Policy Optimization 2024 Yuanzhao Zhai
Yiying Li
Zijian Gao
Xudong Gong
Kele Xu
Dawei Feng
Bo Ding
Huaimin Wang
+ Optimistic Model Rollouts for Pessimistic Offline Policy Optimization 2024 Yuanzhao Zhai
Yiying Li
Zijian Gao
Xudong Gong
Kele Xu
Dawei Feng
Bo Ding
Huaimin Wang
+ PDF Chat Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism 2022 Paria Rashidinejad
Banghua Zhu
Cong Ma
Jiantao Jiao
Stuart Russell
+ Model-Based Offline Reinforcement Learning with Pessimism-Modulated Dynamics Belief 2022 Kaiyang Guo
Yunfeng Shao
Yanhui Geng
+ Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism 2021 Paria Rashidinejad
Banghua Zhu
Cong Ma
Jiantao Jiao
Stuart Russell
+ Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning 2022 Chenjia Bai
Lingxiao Wang
Zhuoran Yang
Zhihong Deng
Animesh Garg
Peng Liu
Zhaoran Wang
+ Bi-Level Offline Policy Optimization with Limited Exploration 2023 Wenzhuo Zhou
+ PDF Chat Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning 2024 Dake Zhang
Boxiang Lyu
Shuang Qiu
Mladen Kolar
Tong Zhang
+ Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game 2022 Wei Xiong
Han Zhong
Chengshuai Shi
Cong Shen
Liwei Wang
Tong Zhang
+ PDF Chat Bellman-consistent Pessimism for Offline Reinforcement Learning 2021 Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
+ Bellman-consistent Pessimism for Offline Reinforcement Learning 2021 Tengyang Xie
Ching-An Cheng
Nan Jiang
Paul Mineiro
Alekh Agarwal
+ Towards Tractable Optimism in Model-Based Reinforcement Learning 2020 Aldo Pacchiano
Philip Ball
Jack Parker-Holder
Krzysztof Choromański
Stephen Roberts
+ PDF Chat Bayesian Design Principles for Offline-to-Online Reinforcement Learning 2024 Hao Hu
Yiqin Yang
Jianing Ye
Chengjie Wu
Ziqing Mai
Yujing Hu
Tangjie Lv
Changjie Fan
Qianchuan Zhao
Chongjie Zhang
+ Achieving the Minimax Optimal Sample Complexity of Offline Reinforcement Learning: A DRO-Based Approach 2023 Yue Wang
Yuting Hu
Jinjun Xiong
Shaofeng Zou