Type: Article
Publication Date: 2022-03-30
Citations: 3
DOI: https://doi.org/10.5802/jep.192
Chebyshev’s bias is the phenomenon according to which for most x, the interval [2,x] contains more primes congruent to 3 modulo 4 than primes congruent to 1 modulo 4. We present new families of examples of analogous phenomena when counting prime ideals in number fields of higher degree where the bias takes place for all large enough x. Our proofs are unconditional.