Schrödinger trace invariants for homogeneous perturbations of the harmonic oscillator

Type: Article

Publication Date: 2020-12-24

Citations: 4

DOI: https://doi.org/10.4171/jst/328

Abstract

Let H = H_0 + P denote the harmonic oscillator on \mathbb{R}^d perturbed by an isotropic pseudodifferential operator P of order 1 and let U(t) = \operatorname{exp}(- it H) . We prove a Gutzwiller–Duistermaat–Guillemin type trace formula for \operatorname{Tr} U(t). The singularities occur at times t \in 2 \pi \mathbb{Z} and the coefficients involve the dynamics of the Hamilton flow of the symbol \sigma(P) on the space \mathbb{CP}^{d-1} of harmonic oscillator orbits of energy 1 . This is a novel kind of sub-principal symbol effect on the trace. We generalize the averaging technique of Weinstein and Guillemin to this order of perturbation, and then present two completely different calculations of \operatorname{Tr} U(t) . The first proof directly constructs a parametrix of U(t) in the isotropic calculus, following earlier work of Doll–Gannot–Wunsch. The second proof conjugates the trace to the Bargmann–Fock setting, the order 1 of the perturbation coincides with the 'central limit scaling' studied by Zelditch–Zhou for Toeplitz operators.

Locations

  • Journal of Spectral Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Schrödinger Trace Invariants for Homogeneous Perturbations of the Harmonic Oscillator 2018 Moritz Doll
Steve Zelditch
+ Schr\"odinger Trace Invariants for Homogeneous Perturbations of the Harmonic Oscillator 2018 Moritz Doll
Steve Zelditch
+ PDF Chat A Fulling–Kuchment theorem for the 1D harmonic oscillator 2012 Victor Guillemin
Hamid Hezari
+ Semiclassical Analysis of Schrödinger Operators on Closed Manifolds and Symmetry Reduction 2015 Benjamin Küster
+ PDF Chat Infinite matrix representations of isotropic pseudodifferential operators 2011 Otis Chodosh
+ Gaussian decay for a difference of traces of the Schrödinger semigroup associated with the isotropic harmonic oscillator 2014 Mathieu Beau
Baptiste Savoie
+ Trace formulas for a perturbed operator 1963 Richard C. Gilbert
Vernon A. Kramer
+ Gaussian decay for a difference of traces of the Schr\"odinger semigroup associated to the isotropic harmonic oscillator 2014 Mathieu Beau
Baptiste Savoie
+ PDF Chat Perturbation by trace class operators 1974 Richard Carey
Joel D. Pincus
+ Transformation Operators for Perturbed Harmonic Oscillators 2019 G. M. Masmaliev
A. Kh. Khanmamedov
+ PDF Chat Heisenberg-smooth operators from the phase space perspective 2024 Robert Fulsche
Lauritz van Luijk
+ Mean Oscillation and Hankel Operators on the Segal-Bargmann Space 2005 Wolfram Bauer
+ Hankel-Like Operators in 2008 Namita Das
+ Hankel Operators on Segal-Bargmann Spaces 2004 Thomas Deck
+ Analyse spectrale des systèmes d'opérateurs h-pseudodifférentiels 2017 Marouane Assal
+ Heisenberg parabolically induced representations of Hermitian Lie groups, Part I: Unitarity and subrepresentations 2022 Jan Frahm
Clemens Weiske
Genkai Zhang
+ Index and Dynamics of Quantized Contact Transformations 2000 Steve Zelditch
+ Harmonic analysis on 2-step stratified Lie groups without the Moore-Wolf condition 2022 Zhipeng Yang
+ Hilbert-Schmidt Hankel operators on the Segal-Bargmann space 2004 Wolfram Bauer
+ Hilbert-Schmidt and Trace Class Pseudo-differential Operators on the Abstract Heisenberg Group. 2019 Aparajita Dasgupta
Vishvesh Kumar