Random data theory for the cubic fourth-order nonlinear Schrödinger equation

Type: Article

Publication Date: 2020-12-18

Citations: 3

DOI: https://doi.org/10.3934/cpaa.2020284

Abstract

We consider the cubic nonlinear fourth-order Schrödinger equation \begin{document}$ i \partial_t u - \Delta^2 u + \mu \Delta u = \pm |u|^2 u, \quad \mu \geq 0 $\end{document} on $ \mathbb R^N, N\geq 5 $ with random initial data. We prove almost sure local well-posedness below the scaling critical regularity. We also prove probabilistic small data global well-posedness and scattering. Finally, we prove the global well-posedness and scattering with a large probability for initial data randomized on dilated cubes.

Locations

  • Communications on Pure &amp Applied Analysis - View - PDF

Similar Works

Action Title Year Authors
+ Random data theory for the cubic fourth-order nonlinear Schrödinger equation 2020 Van Duong Dinh
+ Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity 2015 Hiroyuki Hirayama
Mamoru Okamoto
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Almost sure well-posedness and scattering of the 3D cubic nonlinear Schrödinger equation 2021 Jia Shen
Avy Soffer
Yifei Wu
+ PDF Chat Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation 2022 Jia Shen
Avy Soffer
Yifei Wu
+ Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2021 Martin Spitz
+ Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schr\"odinger equation on $\mathbb{R}^3$ 2017 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb{R}^3$ 2017 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Almost Sure Global Well-posedness for the Fourth-order nonlinear Schrodinger Equation with Large Initial Data 2024 Mingjuan Chen
Shuai Zhang
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schr\"odinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ PDF Chat Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2022 Martin Spitz
+ PDF Chat Probabilistic Cauchy theory for the mass-critical fourth-order nonlinear Schrödinger equation 2021 Van Duong Dinh
+ Random data Cauchy problem for the quadratic nonlinear Schrödinger equation without gauge invariance 2020 Mamoru Okamoto
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2019 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ PDF Chat Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ 2019 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Almost Sure Scattering of the Energy Critical NLS in $d>6$ 2022 Katie Marsden
+ PDF Chat Almost sure scattering of the energy-critical NLS in $ d>6 $ 2023 Katie Marsden
+ Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data 2022 Nicolas Camps

Works Cited by This (0)

Action Title Year Authors