Generalized Littlewood–Richardson coefficients for branching rules of GL<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>and extremal weight crystals

Type: Article

Publication Date: 2020-12-04

Citations: 1

DOI: https://doi.org/10.5802/alco.143

Abstract

Following the methods used by Derksen–Weyman in [] and Chindris in [], we use quiver theory to represent the generalized Littlewood–Richardson coefficients for the branching rule for the diagonal embedding of GL(n) as the dimension of a weight space of semi-invariants. Using this, we prove their saturation and investigate when they are nonzero. We also show that for certain partitions the associated stretched polynomials satisfy the same conjectures as single Littlewood–Richardson coefficients. We then provide a polytopal description of this multiplicity and show that its positivity may be computed in strongly polynomial time. Finally, we remark that similar results hold for certain other generalized Littlewood–Richardson coefficients.

Locations

  • Algebraic Combinatorics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • MOspace Institutional Repository (University of Missouri) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2018 Brett M. Collins
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2021 Brett M. Collins
+ LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL WEIGHT CRYSTALS (Representation Theory and Combinatorics) 2010 Jae-Hoon Kwon
+ PDF Chat Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients 2000 Harm Derksen
Jerzy Weyman
+ Quantization of branching coefficients for classical Lie groups 2006 Cédric Lecouvey
+ Bidilatation of Small Littlewood-Richardson Coefficients 2022 Pierre-Emmanuel Chaput
Nicolas Ressayre
+ The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone 2001 Allen Knutson
Terence Tao
Christopher T. Woodward
+ Some unexpected properties of Littlewood-Richardson coefficients 2020 Maxime Pelletier
Nicolas Ressayre
+ PDF Chat The honeycomb model of $GL_n(\mathbb C)$ tensor products I: Proof of the saturation conjecture 1999 Allen Knutson
Terence Tao
+ PDF Chat Extremal weight projectors II, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝔤𝔩</mml:mi> <mml:mi>N</mml:mi> </mml:msub></mml:math> case 2024 Hoel Queffélec
Paul Wedrich
+ The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone 2003 Allen Knutson
Terence Tao
Christopher T. Woodward
+ Schubert polynomials and the Littlewood-Richardson rule 1985 Alain Lascoux
Marcel-Paul Sch�tzenberger
+ The saturation problem for refined Littlewood-Richardson coefficients 2022 Mrigendra Singh Kushwaha
K. N. Raghavan
Sankaran Viswanath
+ PDF Chat A generalization of the alcove model and its applications 2012 Cristian Lenart
Arthur Lubovsky
+ A dual Littlewood-Richardson rule and extensions 2022 Oliver Pechenik
Anna Weigandt
+ Polynomiality of the Stretched Littlewood-Richardson Coefficients 2022 Warut Thawinrak
+ A polynomiality property for Littlewood–Richardson coefficients 2004 Etienne Rassart
+ Crystal duality and Littlewood–Richardson rule of extremal weight crystals 2011 Jae-Hoon Kwon
+ Modular Littlewood-Richardson coefficients 1999 Jonathan Brundan
Alexander Kleshchev
+ PDF Chat Some Unexpected Properties of Littlewood-Richardson Coefficients 2022 Maxime Pelletier
Nicolas Ressayre

Works That Cite This (1)

Action Title Year Authors
+ Toric degeneration of algebras of invariants 2024 Sangjib Kim
Soo Teck Lee