Boundary complexes of moduli spaces of curves in higher genus

Type: Article

Publication Date: 2020-12-16

Citations: 4

DOI: https://doi.org/10.1090/proc/15423

Abstract

Given a collection of boundary divisors in the moduli space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M overbar Subscript 0 comma n"> <mml:semantics> <mml:msub> <mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\overline {\mathcal {M}}_{0,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of stable genus-zero <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-pointed curves, Giansiracusa proved that their intersection is nonempty if and only if all pairwise intersections are nonempty. We give a complete classification of the pairs <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis g comma n right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(g,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which the analogous statement holds in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M overbar Subscript g comma n"> <mml:semantics> <mml:msub> <mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\overline {\mathcal {M}}_{g,n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ Hyperelliptic 𝐴ᵣ-stable curves (and their moduli stack) 2024 Michele Pernice
+ Effective cones of quotients of moduli spaces of stable 𝑛-pointed curves of genus zero 2006 William Rulla
+ Rational maps between moduli spaces of curves and Gieseker-Petri divisors 2009 Gavril Farkas
+ Classes of Weierstrass points on genus 2 curves 2018 Renzo Cavalieri
Nicola Tarasca
+ The Brauer group of moduli spaces of vector bundles over a real curve 2011 Indranil Biswas
Norbert Hoffmann
Amit Hogadi
Alexander Schmitt
+ An introduction to moduli spaces of curves and their intersection theory 2012 Dimitri Zvonkine
+ On the connectedness of the branch locus of the moduli space of Riemann surfaces of low genus 2011 Gabriel Bartolini
Milagros Izquierdo
+ A structure theorem for 𝒮𝒰_{𝒞}(2) and the moduli of pointed rational curves 2014 Alberto Alzati
Michele Bolognesi
+ Siegel metric and curvature of the moduli space of curves 2009 Elisabetta Colombo
Paola Frediani
+ PDF Chat Brauer group of moduli spaces of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">PGL</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>r</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-bundles over a curve 2010 Indranil Biswas
Amit Hogadi
+ PDF Chat Intersections of ℚ-divisors on Kontsevich’s moduli space \overline{𝕄}_{0,𝕟}(ℙ^{𝕣},𝕕) and enumerative geometry 1999 Rahul Pandharipande
+ Moduli of Curves 1998 Joe Harris
Ian Morrison
+ PDF Chat None 2016
+ PDF Chat RECURSIVE COMBINATORIAL ASPECTS OF COMPACTIFIED MODULI SPACES 2019 Lucia Caporaso
+ The Picard group of the moduli of smooth complete intersections of two quadrics 2018 Shamil Asgarli
Giovanni Inchiostro
+ Moduli of complexes on a proper morphism 2005 Max Lieblich
+ PDF Chat On the genus of smooth 4-manifolds 1992 Alberto Cavicchioli
+ Moduli of Curves 2017 L. Brambila Paz
Ciro Ciliberto
Eduardo Esteves
Margarida Melo
Claire Voisin
+ Ample divisors on moduli spaces of pointed rational curves 2011 Maksym Fedorchuk
David Ishii Smyth
+ PDF Chat The level sets of the moduli of functions of bounded characteristic 1984 Robert D. Berman