Type: Article
Publication Date: 2020-01-01
Citations: 59
DOI: https://doi.org/10.1137/20m1333456
A new class of high-order maximum principle preserving numerical methods is proposed for solving parabolic equations, with application to the semilinear Allen--Cahn equation. The proposed method consists of a $k$th-order multistep exponential integrator in time and a lumped mass finite element method in space with piecewise $r$th-order polynomials and Gauss--Lobatto quadrature. At every time level, the extra values violating the maximum principle are eliminated at the finite element nodal points by a cut-off operation. The remaining values at the nodal points satisfy the maximum principle and are proved to be convergent with an error bound of $O(\tau^k+h^r)$. The accuracy can be made arbitrarily high-order by choosing large $k$ and $r$. Extensive numerical results are provided to illustrate the accuracy of the proposed method and the effectiveness in capturing the pattern of phase-field problems.