On Interpretability of Artificial Neural Networks: A Survey

Type: Preprint

Publication Date: 2020-01-01

Citations: 29

DOI: https://doi.org/10.48550/arxiv.2001.02522

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat On Interpretability of Artificial Neural Networks: A Survey 2021 Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
+ Towards Fully Interpretable Deep Neural Networks: Are We There Yet? 2021 Sandareka Wickramanayake
Wynne Hsu
Mong Li Lee
+ PDF Chat New Perspective of Interpretability of Deep Neural Networks 2020 Masanari Kimura
Masayuki Tanaka
+ New Perspective of Interpretability of Deep Neural Networks 2019 Masanari Kimura
Masayuki Tanaka
+ A Survey on Neural Network Interpretability 2020 Yu Zhang
Peter Tiƈo
AleĆĄ Leonardis
Ke Tang
+ PDF Chat A Survey on Neural Network Interpretability 2021 Yu Zhang
Peter Tiƈo
AleĆĄ Leonardis
Ke Tang
+ Transparency of Deep Neural Networks for Medical Image Analysis: A Review of Interpretability Methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ Transparency of deep neural networks for medical image analysis: A review of interpretability methods 2021 Zohaib Salahuddin
Henry C. Woodruff
Avishek Chatterjee
Philippe Lambin
+ How far from automatically interpreting deep learning. 2018 Jinwei Zhao
Qizhou Wang
Yufei Wang
Xinhong Hei
YĂŒ Liu
+ How far from automatically interpreting deep learning 2018 Jinwei Zhao
Qizhou Wang
Yufei Wang
Xinhong Hei
Yu Liu
+ Improving Interpretability of Deep Neural Networks in Medical Diagnosis by Investigating the Individual Units 2021 Woo-Jeoung Nam
Seong‐Whan Lee
+ Decoupling Deep Learning for Interpretable Image Recognition 2022 Yitao Peng
Yihang Liu
Longzhen Yang
Lianghua He
+ A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI 2020 Erico Tjoa
Cuntai Guan
+ A Survey on Understanding, Visualizations, and Explanation of Deep Neural Networks 2021 Atefeh Shahroudnejad
+ PDF Chat Improving Interpretability of Deep Neural Networks in Medical Diagnosis by Investigating the Individual Units 2024 Ho-Kyung Shin
Woo-Jeoung Nam
+ PDF Chat Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications 2021 Wojciech Samek
Grégoire Montavon
Sebastian Lapuschkin
Christopher J. Anders
Klaus‐Robert MĂŒller
+ A Survey on Understanding, Visualizations, and Explanation of Deep Neural Networks 2021 Atefeh Shahroudnejad
+ Demysifying Deep Neural Networks Through Interpretation: A Survey. 2020 Giang Dao
Minwoo Lee
+ Opportunities and Challenges in Explainable Artificial Intelligence (XAI): A Survey 2020 Arun Das
Paul Rad
+ Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond 2020 Wojciech Samek
Grégoire Montavon
Sebastian Lapuschkin
Christopher J. Anders
Klaus‐Robert MĂŒller

Works That Cite This (8)

Action Title Year Authors
+ PDF Chat Ten quick tips for deep learning in biology 2022 Benjamin D. Lee
Anthony Gitter
Casey S. Greene
Sebastian Raschka
Finlay Maguire
Alexander J. Titus
Michael D. Kessler
Alexandra Lee
Marc G. Chevrette
Paul A. Stewart
+ Advancing from Predictive Maintenance to Intelligent Maintenance with AI and IIoT 2020 Haining Zheng
AntĂłnio R. C. Paiva
Christopher S. Gurciullo
+ PDF Chat Segmentation of Cardiac Structures via Successive Subspace Learning with Saab Transform from Cine MRI 2021 Xiaofeng Liu
Fangxu Xing
Hanna K. Gaggin
Weichung Wang
C.‐C. Jay Kuo
Georges El Fakhri
Jonghye Woo
+ Understanding in Artificial Intelligence. 2021 Stefan Maetschke
David MartĂ­nez
Pieter Barnard
Elaheh ShafieiBavani
Peter Zhong
Ying Xu
Antonio Jimeno Yepes
+ Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of Convolutional Neural Networks 2021 Mahesh Sudhakar
Sam Sattarzadeh
Konstantinos N. Plataniotis
Jongseong Jang
Yeonjeong Jeong
Hyunwoo Kim
+ Machine Learning Classification of Price Extrema Based on Market Microstructure Features: A Case Study of S&P500 E-mini Futures. 2020 Artur Sokolovsky
Luca Arnaboldi
+ VoxelHop: Successive Subspace Learning for ALS Disease Classification Using Structural MRI 2021 Xiaofeng Liu
Fangxu Xing
Chao Yang
C.‐C. Jay Kuo
Suma Babu
Georges El Fakhri
Thomas M. Jenkins
Jonghye Woo
+ Convolutional Neural Network Dynamics: A Graph Perspective. 2021 Fatemeh Vahedian
Ruiyu Li
Puja Trivedi
Di Jin
Danai Koutra