Foundations of variational discrete action theory

Type: Article

Publication Date: 2021-05-17

Citations: 5

DOI: https://doi.org/10.1103/physrevb.103.195138

Abstract

Variational wave functions and Green's functions are two important paradigms for solving quantum Hamiltonians, each having their own advantages. Here we detail the Variational Discrete Action Theory (VDAT), which exploits the advantages of both paradigms in order to approximately solve the ground state of quantum Hamiltonians. VDAT consists of two central components: the sequential product density matrix (SPD) ansatz and a discrete action associated with the SPD. The SPD is a variational ansatz inspired by the Trotter decomposition and characterized by an integer $\mathcal{N}$, recovering many well known variational wave functions, in addition to the exact solution for $\mathcal{N}=\infty$. The discrete action describes all dynamical information of an effective integer time evolution with respect to the SPD. We generalize the path integral to our integer time formalism, which converts a dynamic correlation function in integer time to a static correlation function in a compound space. We also generalize the usual many-body Green's function formalism to integer time, which results in analogous but distinct mathematical structures, yielding integer time versions of the generating functional, Dyson equation, and Bethe-Salpeter equation. We prove that the SPD can be exactly evaluated in the multi-band Anderson impurity model (AIM) by summing a finite number of diagrams. For the multi-band Hubbard model, we prove that the self-consistent canonical discrete action approximation (SCDA), which is the integer time analogue of the dynamical mean-field theory, exactly evaluates the SPD for $d=\infty$. VDAT within the SCDA provides an efficient yet reliable method for capturing the local physics of quantum lattice models, which will have broad applications for strongly correlated electron materials. More generally, VDAT should find applications in various many-body problems in physics.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Variational Discrete Action Theory 2021 Zhengqian Cheng
Chris A. Marianetti
+ A gauge constrained algorithm of VDAT at $\mathcal{N}=3$ for the multi-orbital Hubbard model 2023 Zhengqian Cheng
Chris A. Marianetti
+ A unified theory of variational and quantum Monte Carlo methods and beyond 2018 Mohammad-Sadegh Vaezi
Abolhassan Vaezi
+ PDF Chat Adaptive Variational Quantum Dynamics Simulations 2021 Yongxin Yao
Niladri Gomes
Feng Zhang
Cai‐Zhuang Wang
Kai‐Ming Ho
Thomas Iadecola
Peter P. Orth
+ PDF Chat Gaussian time-dependent variational principle for the finite-temperature anharmonic lattice dynamics 2021 Jae-Mo Lihm
Cheol-Hwan Park
+ PDF Chat Bosonic self-energy functional theory 2016 Dario Hügel
Philipp Werner
Lode Pollet
Hugo U. R. Strand
+ PDF Chat Variational Numerical Renormalization Group: Bridging the Gap between NRG and Density Matrix Renormalization Group 2012 Iztok Pižorn
Frank Verstraete
+ PDF Chat Hybrid quantum-classical algorithm for computing imaginary-time correlation functions 2022 Rihito Sakurai
Wataru Mizukami
Hiroshi Shinaoka
+ Continuous-time method for quantum impurity models 2008 Emanuel Gull
Philipp Werner
Olivier Parcollet
Matthias Troyer
+ Comparative study on compact quantum circuits of hybrid quantum-classical algorithms for quantum impurity models 2023 Rihito Sakurai
Oliver J. Backhouse
George H. Booth
Wataru Mizukami
Hiroshi Shinaoka
+ PDF Chat Precise ground state of multiorbital Mott systems via the variational discrete action theory 2022 Zhengqian Cheng
Chris A. Marianetti
+ PDF Chat Continuous-time Monte Carlo methods for quantum impurity models 2011 Emanuel Gull
Andrew J. Millis
A. I. Lichtenstein
A. N. Rubtsov
Matthias Troyer
Philipp Werner
+ PDF Chat Time-dependent density functional theory on a lattice 2012 Mehdi Farzanehpour
I. V. Tokatly
+ PDF Chat Adaptively truncated Hilbert space based impurity solver for dynamical mean-field theory 2017 Ara Go
Andrew J. Millis
+ Mathematical Perspective on Quantum Monte Carlo Methods 2014 Éric Cancès
+ mVMC—Open-source software for many-variable variational Monte Carlo method 2018 Takahiro Misawa
Satoshi Morita
Kazuyoshi Yoshimi
Mitsuaki Kawamura
Yuichi Motoyama
Kota Ido
Takahiro Ohgoe
Masatoshi Imada
Takeo Kato
+ A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics 2016 Joshua S. Kretchmer
Garnet Kin‐Lic Chan
+ A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics 2016 Joshua S. Kretchmer
Garnet Kin‐Lic Chan
+ PDF Chat Variational principle for quantum impurity systems in and out of equilibrium: Application to Kondo problems 2018 Yuto Ashida
Tao Shi
Mari Carmen Bañuls
J. I. Cirac
Eugene Demler
+ Variational Quantum Simulations of Finite-Temperature Dynamical Properties via Thermofield Dynamics 2022 Chee Kong Lee
Shi‐Xin Zhang
Chang‐Yu Hsieh
Shengyu Zhang
Liang Shi

Works Cited by This (23)

Action Title Year Authors
+ PDF Chat Blow-up of semilinear pde’s at the critical dimension. A probabilistic approach 2002 Matthias Birkner
José Alfredo López-Mimbela
Anton Wakolbinger
+ PDF Chat Generalized Lanczos algorithm for variational quantum Monte Carlo 2001 Sandro Sorella
+ PDF Chat Multiband Gutzwiller wave functions for general on-site interactions 1998 Jörg Bünemann
W. Weber
Florian Gebhard
+ PDF Chat On the product of semi-groups of operators 1959 H. F. Trotter
+ PDF Chat Efficient implementation of the Gutzwiller variational method 2012 Nicola Lanatà
Hugo U. R. Strand
Xi Dai
B. Hellsing
+ PDF Chat Gutzwiller-correlated wave functions for degenerate bands: exact results in infinite dimensions 1997 Jörg Bünemann
Florian Gebhard
W. Weber
+ PDF Chat Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models 2007 Jörg Bünemann
Florian Gebhard
+ PDF Chat Wave function optimization in the variational Monte Carlo method 2005 Sandro Sorella
+ PDF Chat Finite-temperature Gutzwiller approximation and the phase diagram of a toy model for V<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:msub></mml:math>O<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:msub></mml:math> 2013 Matteo Sandri
Massimo Capone
Michele Fabrizio
+ PDF Chat Numerical minimisation of Gutzwiller energy functionals 2012 Jörg Bünemann
Florian Gebhard
Tobias Schickling
W. Weber