A new upper bound for sets with no square differences

Type: Article

Publication Date: 2022-08-01

Citations: 11

DOI: https://doi.org/10.1112/s0010437x22007679

Abstract

We show that if $\mathcal {A}\subset \{1,\ldots,N\}$ has no solutions to $a-b=n^2$ with $a,b\in \mathcal {A}$ and $n\geq 1$ , then \[ \lvert \mathcal{A}\rvert \ll \frac{N}{(\log N)^{c\log\log \log N}} \] for some absolute constant $c>0$ . This improves upon a result of Pintz, Steiger, and Szemerédi.

Locations

  • arXiv (Cornell University) - View - PDF
  • Compositio Mathematica - View

Similar Works

Action Title Year Authors
+ A new upper bound for sets with no square differences 2020 Thomas F. Bloom
James E. Maynard
+ A new bound for A(A + A) for large sets 2024 Aliaksei Semchankau
+ Lower bounds on multiple difference sets 1991 Wende Chen
Torleiv Kløve
+ A maximal extension of the Bloom-Maynard bound for sets with no square differences 2023 Nuno Arala
+ A maximal extension of the Bloom-Maynard bound for sets without square differences 2024 Nuno Arala
+ New results on lower bounds for the number of 2007 Oswin Aichholzer
Jesús Garcı́a
David Orden
Pedro Ramos
+ Forbidding a Set Difference of Size 1 2013 Imre Leader
Eoin Long
+ Bounds on Squares of Two-Sets 1993 Daniel Slilaty
Jeffrey M. VanderKam
+ On a theorem of Sárközy for difference sets and shifted primes 2019 Ruoyi Wang
+ An Upper Bound for Weak $B_k$-Sets 2019 Tomasz Schoen
Ilya D. Shkredov
+ New results on lower bounds for the number of ( 2009 Oswin Aichholzer
Jesús Garcı́a
David Orden
Pedro Ramos
+ Sharp estimates for the number of sum-free sets 2003 Vsevolod F. Lev
+ Forbidding a set difference of size 1 2014 Imre Leader
Eoin Long
+ An upper bound for weak $B_k$-sets 2016 Tomasz Schoen
Ilya D. Shkredov
+ PDF Chat Sharp Bounds for Sets with Distinct Subset Products 2025 Rushil Raghavan
+ PDF Chat An improved lower bound related to the Furstenberg-Sárközy theorem 2015 Mark Lewko
+ New lower bounds for cardinalities of higher dimensional difference sets and sumsets 2021 Akshat Mudgal
+ New lower bounds for cardinalities of higher dimensional difference sets and sumsets 2022 Akshat Mudgal
+ New Lower Bounds for Cap Sets 2022 Fred Tyrrell
+ An Upper Bound for d -dimensional Difference Sets 2001 Yonutz V. Stanchescu