Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Topological study of the Lorenz convection model's random attractor (LORA)
Denisse Sciamarella
,
Michael Ghil
,
Gisela Daniela Charó
Type:
Preprint
Publication Date:
2019-12-09
Citations:
0
View Publication
Share
Locations
HAL (Le Centre pour la Communication Scientifique Directe) -
View
Similar Works
Action
Title
Year
Authors
+
PDF
Chat
Topological Effects of Noise on Nonlinear Dynamics
2020
Gisela D. Charó
Mickaël D. Chekroun
Denisse Sciamarella
Michael Ghil
+
PDF
Chat
Noise-driven topological changes in chaotic dynamics
2021
Gisela D. Charó
Mickaël D. Chekroun
Denisse Sciamarella
Michael Ghil
+
PDF
Chat
Random templex encodes topological tipping points in noise-driven chaotic dynamics
2023
Gisela D. Charó
Michael Ghil
Denisse Sciamarella
+
Identifying topological tipping points in noise-driven chaotic dynamics using random templexes
2023
Gisela D. Charó
Michael Ghil
Denisse Sciamarella
+
Random templex encodes topological tipping points in noise-driven chaotic dynamics
2022
Gisela Daniela Charó
Michael Ghil
Denisse Sciamarella
+
Topology of Lorenz-like attractors
2019
+
PDF
Chat
Visualizing global manifolds during the transition to chaos in the Lorenz system
2009
Bernd Krauskopf
Hinke M. Osinga
Eusebius J. Doedel
+
PDF
Chat
Templex: A bridge between homologies and templates for chaotic attractors
2022
Gisela D. Charó
Christophe Letellier
Denisse Sciamarella
+
PDF
Chat
The structure of Lorenz attractors
1979
R. F. Williams
+
A topological invariant of the Lorenz attractor
1992
Наталья Эдуардовна Клиншпонт
+
PDF
Chat
The Lorenz Attractor, a Paradigm for Chaos
2013
Étienne Ghys
+
Topological and Measurable Dynamics of Lorenz Maps
2001
Gerhard Keller
Matthias St. Pierre
+
How topology came to chaos
2013
Robert Gilmore
+
On a Comprehensive Topological Analysis of Moore Spiegel Attractor
2017
Anirban Ray
A. Roychowdhury
+
Up, down, two-sided Lorenz attractor, collisions, merging and switching
2021
Diego Barros
Christian Bonatti
Maria José Pacífico
+
PDF
Chat
Visualizing the structure of chaos in the Lorenz system
2002
Hinke M. Osinga
Bernd Krauskopf
+
Visualizing the transition to chaos in the Lorenz system
2006
Hinke M. Osinga
Bernd Krauskopf
EJ Doedel
+
The fractal property of the Lorenz attractor
2003
Divakar Viswanath
+
Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization
2023
Tali Pinsky
+
Required criteria for recognizing new types of chaos: Application to the “cord” attractor
2012
Christophe Letellier
Luís A. Aguirre
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (0)
Action
Title
Year
Authors