Topological study of the Lorenz convection model's random attractor (LORA)

Type: Preprint

Publication Date: 2019-12-09

Citations: 0

Locations

  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ PDF Chat Topological Effects of Noise on Nonlinear Dynamics 2020 Gisela D. Charó
Mickaël D. Chekroun
Denisse Sciamarella
Michael Ghil
+ PDF Chat Noise-driven topological changes in chaotic dynamics 2021 Gisela D. Charó
Mickaël D. Chekroun
Denisse Sciamarella
Michael Ghil
+ PDF Chat Random templex encodes topological tipping points in noise-driven chaotic dynamics 2023 Gisela D. Charó
Michael Ghil
Denisse Sciamarella
+ Identifying topological tipping points in noise-driven chaotic dynamics using random templexes 2023 Gisela D. Charó
Michael Ghil
Denisse Sciamarella
+ Random templex encodes topological tipping points in noise-driven chaotic dynamics 2022 Gisela Daniela Charó
Michael Ghil
Denisse Sciamarella
+ Topology of Lorenz-like attractors 2019
+ PDF Chat Visualizing global manifolds during the transition to chaos in the Lorenz system 2009 Bernd Krauskopf
Hinke M. Osinga
Eusebius J. Doedel
+ PDF Chat Templex: A bridge between homologies and templates for chaotic attractors 2022 Gisela D. Charó
Christophe Letellier
Denisse Sciamarella
+ PDF Chat The structure of Lorenz attractors 1979 R. F. Williams
+ A topological invariant of the Lorenz attractor 1992 Наталья Эдуардовна Клиншпонт
+ PDF Chat The Lorenz Attractor, a Paradigm for Chaos 2013 Étienne Ghys
+ Topological and Measurable Dynamics of Lorenz Maps 2001 Gerhard Keller
Matthias St. Pierre
+ How topology came to chaos 2013 Robert Gilmore
+ On a Comprehensive Topological Analysis of Moore Spiegel Attractor 2017 Anirban Ray
A. Roychowdhury
+ Up, down, two-sided Lorenz attractor, collisions, merging and switching 2021 Diego Barros
Christian Bonatti
Maria José Pacífico
+ PDF Chat Visualizing the structure of chaos in the Lorenz system 2002 Hinke M. Osinga
Bernd Krauskopf
+ Visualizing the transition to chaos in the Lorenz system 2006 Hinke M. Osinga
Bernd Krauskopf
EJ Doedel
+ The fractal property of the Lorenz attractor 2003 Divakar Viswanath
+ Analytical study of the Lorenz system: Existence of infinitely many periodic orbits and their topological characterization 2023 Tali Pinsky
+ Required criteria for recognizing new types of chaos: Application to the “cord” attractor 2012 Christophe Letellier
Luís A. Aguirre

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors