A remark on the local well-posedness for a coupled system of mKdV type equations in H^s × H^k

Type: Article

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.7153/dea-2020-12-27

Abstract

We consider the initial value problem associated to a system consisting modified Korteweg-de Vries type equationsand using only bilinear estimates of the typewhere J is the Bessel potential and F j b j , j = 1,2 are multiplication operators, we prove the local well-posedness results for given data in low regularity Sobolev spaces H s (R) × H k (R) for α = 0,1 .In this work we improve the previous result in [6], extending the LWP region from |s -k| < 1/2 to |s -k| < 1 .This result is sharp in the region of the LWP with s 0 and k 0 , in the sense of the trilinear estimates fails to hold.

Locations

  • Differential Equations & Applications - View - PDF

Similar Works

Action Title Year Authors
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ Sharp well-posedness for a coupled system of mKdV type equations 2020 Xavier Carvajal
Liliana Esquivel
Rui Santos
+ Sharp well-posedness for a coupled system of mKdV type equations 2018 Xavier Carvajal
Mahendra Panthee
+ PDF Chat On local well-posedness and ill-posedness results for a coupled system of mkdv type equations 2020 Xavier Carvajal
Liliana Esquivel
Raphael Santos
+ Local existence of solutions for the modified Korteweg-de Vries (mKdV) equation in weighted Sobolev spaces 2021 Milton Milcíades Cortez Gutiérrez
Hernán Óscar Cortez Gutiérrez
Girady Iara Cortez Fuentes Rivera
Liv Jois Cortez Fuentes Rivera
Deolinda Ellyda Fuentes Rivera Vallejo
+ PDF Chat Sharp local well-posedness of KdV type equations with dissipative perturbations 2016 Xavier Carvajal
Mahendra Panthee
+ Sharp local well-posedness of KdV type equations with dissipative perturbations 2013 Xavier Carvajal
Mahendra Panthee
+ Sharp local well-posedness of KdV type equations with dissipative perturbations 2013 Xavier Carvajal
Mahendra Panthee
+ PDF Chat Global well-posedness for a coupled modified KdV system 2012 Adán J. Corcho
Mahendra Panthee
+ Local well-posedness for the fifth-order KdV equations on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="double-struck">T</mml:mi></mml:math> 2016 Chulkwang Kwak
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ Global Well-Posedness for a Coupled Modified KdV System 2011 Adán J. Corcho
Mahendra Panthee
+ PDF Chat Sharp well-posedness for a coupled system of mKdV-type equations 2019 Xavier Carvajal
Mahendra Panthee
+ Weak Continuity of Dynamical Systems for the KdV and mKdV Equations 2009 Shangbin Cui
Carlos E. Kenig
+ Low regularity bounds for mKdV 2012 Michael Christ
Justin Holmer
Daniel Tataru
+ Local well-posedness for the gKdV equation on the background of a bounded function 2021 José Manuel Palacios
+ Local well-posedness for the gKdV equation on the background of a bounded function 2022 José M. Palacios
+ PDF Chat WELL-POSEDNESS FOR A FAMILY OF PERTURBATIONS OF THE KdV EQUATION IN PERIODIC SOBOLEV SPACES OF NEGATIVE ORDER 2013 Xavier Carvajal Paredes
Ricardo A. Pastrán
+ Low regularity bounds for mKdV 2012 Michael Christ
Justin Holmer
Daniel Tataru
+ Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao

Works That Cite This (0)

Action Title Year Authors