Classical Shadows With Noise

Type: Article

Publication Date: 2022-08-16

Citations: 76

DOI: https://doi.org/10.22331/q-2022-08-16-776

Abstract

The classical shadows protocol, recently introduced by Huang, Kueng, and Preskill [Nat. Phys. 16, 1050 (2020)], is a quantum-classical protocol to estimate properties of an unknown quantum state. Unlike full quantum state tomography, the protocol can be implemented on near-term quantum hardware and requires few quantum measurements to make many predictions with a high success probability. In this paper, we study the effects of noise on the classical shadows protocol. In particular, we consider the scenario in which the quantum circuits involved in the protocol are subject to various known noise channels and derive an analytical upper bound for the sample complexity in terms of a shadow seminorm for both local and global noise. Additionally, by modifying the classical post-processing step of the noiseless protocol, we define a new estimator that remains unbiased in the presence of noise. As applications, we show that our results can be used to prove rigorous sample complexity upper bounds in the cases of depolarizing noise and amplitude damping.

Locations

  • Quantum - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Experimental Quantum State Measurement with Classical Shadows 2021 Ting Zhang
Jinzhao Sun
Xiao‐Xu Fang
Xiao‐Ming Zhang
Xiao Yuan
He Lu
+ PDF Chat Demonstration of Robust and Efficient Quantum Property Learning with Shallow Shadows 2024 Hong-Ye Hu
Andi Gu
Swarnadeep Majumder
Hang Ren
Yipei Zhang
Derek S. Wang
Yi-Zhuang You
Zlatko Minev
Susanne F. Yelin
Alireza Seif
+ PDF Chat Robust Shadow Estimation 2021 Senrui Chen
Wenjun Yu
Pei Zeng
Steven T. Flammia
+ PDF Chat Biased Estimator Channels for Classical Shadows 2024 Zhenyu Cai
Adrian Chapman
Hamza Jnane
Bálint Koczor
+ PDF Chat Shadow simulation of quantum processes 2024 Xuanqiang Zhao
Xin Wang
Giulio Chiribella
+ PDF Chat Enhancing Quantum State Reconstruction with Structured Classical Shadows 2025 Zhen Qin
Joseph M. Lukens
Brian T. Kirby
and Zhihui Zhu
+ Precision Bounds on Continuous-Variable State Tomography using Classical Shadows 2022 Srilekha Gandhari
Victor V. Albert
Thomas Gerrits
Jacob M. Taylor
Michael J. Gullans
+ PDF Chat Bounding the Sample Fluctuation for Pure States Certification with Local Random Measurement 2024 Langxuan Chen
Pengfei Zhang
+ PDF Chat Shallow Shadows: Expectation Estimation Using Low-Depth Random Clifford Circuits 2024 Christian Bertoni
Jonas Haferkamp
Marcel Hinsche
Marios Ioannou
Jens Eisert
Hakop Pashayan
+ Error-mitigated fermionic classical shadows on noisy quantum devices 2023 Bujiao Wu
Dax Enshan Koh
+ PDF Chat Dimension Independent and Computationally Efficient Shadow Tomography 2024 Pranay Sinha
+ Quantum Error Mitigated Classical Shadows 2023 Hamza Jnane
Jonathan Steinberg
Zhenyu Cai
H. Chau Nguyen
Bálint Koczor
+ PDF Chat Classical Shadow Tomography for Continuous Variables Quantum Systems 2024 Simon Becker
Nilanjana Datta
Ludovico Lami
Cambyse Rouzé
+ Shadow tomography with noisy readouts 2023 H. Chau Nguyen
+ Stability of classical shadows under gate-dependent noise 2023 Raphael Brieger
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ Quantum Divide and Conquer for Classical Shadows 2022 Daniel T. Chen
Zain H. Saleem
Michael A. Perlin
+ PDF Chat Quantum Circuit Cutting for Classical Shadows 2024 Daniel T. Chen
Zain H. Saleem
Michael A. Perlin
+ Closed-form analytic expressions for shadow estimation with brickwork circuits 2022 Mirko Arienzo
Markus R. Heinrich
Ingo Roth
Martin Kliesch
+ PDF Chat Noise-mitigated randomized measurements and self-calibrating shadow estimation 2024 Emilio Onorati
Jonas Kitzinger
Jonas Helsen
Marios Ioannou
Albert H. Werner
Ingo Roth
Jens Eisert
+ PDF Chat Precision Bounds on Continuous-Variable State Tomography Using Classical Shadows 2024 Srilekha Gandhari
Victor V. Albert
Thomas Gerrits
Jacob M. Taylor
Michael J. Gullans

Works That Cite This (58)

Action Title Year Authors
+ Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions 2023 Yuri Alexeev
Maximilian Amsler
P. G. Baity
Marco Antonio Barroca
Sanzio Bassini
Torey Battelle
Daan Camps
David Casanova
Young Jai Choi
Frederic T. Chong
+ PDF Chat Shallow Shadows: Expectation Estimation Using Low-Depth Random Clifford Circuits 2024 Christian Bertoni
Jonas Haferkamp
Marcel Hinsche
Marios Ioannou
Jens Eisert
Hakop Pashayan
+ PDF Chat Quantum-centric supercomputing for materials science: A perspective on challenges and future directions 2024 Yuri Alexeev
Maximilian Amsler
Marco Antonio Barroca
Sanzio Bassini
Torey Battelle
Daan Camps
David Casanova
Young Jay Choi
Frederic T. Chong
Charles Chung
+ Operator Relaxation and the Optimal Depth of Classical Shadows 2023 Matteo Ippoliti
Yaodong Li
Tibor Rakovszky
Vedika Khemani
+ PDF Chat Efficient Local Classical Shadow Tomography with Number Conservation 2024 Sumner N. Hearth
Michael O. Flynn
Anushya Chandran
Chris R. Laumann
+ PDF Chat Avoiding Barren Plateaus Using Classical Shadows 2022 Stefan Sack
Raimel Medina
Alexios A. Michailidis
Richard Kueng
Maksym Serbyn
+ Quantum Error Mitigated Classical Shadows 2023 Hamza Jnane
Jonathan Steinberg
Zhenyu Cai
H. Chau Nguyen
Bálint Koczor
+ Adaptive Pauli Shadows for Energy Estimation 2021 Charles Hadfield
+ Generation of scalable many-body Bell correlations in spin chains with short-range two-body interactions 2023 Marcin Płodzień
Tomasz Wasak
Emilia Witkowska
Maciej Lewenstein
Jan Chwedeńczuk
+ Efficient Characterizations of Multiphoton States with Ultra-thin Integrated Photonics 2023 Kui An
Zilei Liu
Ting Zhang
Siqi Li
You Zhou
Xiao Yuan
Leiran Wang
Wenfu Zhang
Guoxi Wang
He Lu