Subconvex bounds for Hecke–Maass forms on compact arithmetic quotients of semisimple Lie groups

Type: Article

Publication Date: 2020-12-01

Citations: 5

DOI: https://doi.org/10.1007/s00209-020-02635-0

Abstract

Abstract Let H be a semisimple algebraic group, K a maximal compact subgroup of $$G:=H({{\mathbb {R}}})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>G</mml:mi><mml:mo>:</mml:mo><mml:mo>=</mml:mo><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> , and $$\Gamma \subset H({{\mathbb {Q}}})$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Γ</mml:mi><mml:mo>⊂</mml:mo><mml:mi>H</mml:mi><mml:mo>(</mml:mo><mml:mi>Q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> a congruence arithmetic subgroup. In this paper, we generalize existing subconvex bounds for Hecke–Maass forms on the locally symmetric space $$\Gamma \backslash G/K$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Γ</mml:mi><mml:mo>\</mml:mo><mml:mi>G</mml:mi><mml:mo>/</mml:mo><mml:mi>K</mml:mi></mml:mrow></mml:math> to corresponding bounds on the arithmetic quotient $$\Gamma \backslash G$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Γ</mml:mi><mml:mo>\</mml:mo><mml:mi>G</mml:mi></mml:mrow></mml:math> for cocompact lattices using the spectral function of an elliptic operator. The bounds obtained extend known subconvex bounds for automorphic forms to non-trivial K -types, yielding such bounds for new classes of automorphic representations. They constitute subconvex bounds for eigenfunctions on compact manifolds with both positive and negative sectional curvature. We also obtain new subconvex bounds for holomorphic modular forms in the weight aspect.

Locations

  • Mathematische Zeitschrift - View - PDF

Similar Works

Action Title Year Authors
+ Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups 2017 Pablo Ramacher
Satoshi Wakatsuki
+ Equivariant subconvex bounds for Hecke-Maass forms on semisimple groups 2017 Pablo Ramacher
Satoshi Wakatsuki
+ Upper bounds for Maass forms on semisimple groups 2014 Simon Marshall
+ Uniform boundedness for algebraic groups and Lie groups 2022 Jarek Kędra
Assaf Libman
Benjamin Martin
+ PDF Chat Hybrid subconvexity for class group 𝐿-functions and uniform sup norm bounds of Eisenstein series 2020 Asbjørn Christian Nordentoft
+ Crystal limits of compact semisimple quantum groups as higher-rank graph algebras 2023 Marco Matassa
Robert Yuncken
+ PDF Chat On conjugacy classes of elements of finite order in compact or complex semisimple Lie groups 1980 Dragomir Ž. Djoković
+ Explicit subconvexity savings for sup-norms of cusp forms on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="normal">PGL</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2019 Nate Gillman
+ PDF Chat On Medium-Rank Lie Primitive and Maximal Subgroups of Exceptional Groups of Lie Type 2023 David Craven
+ Generating sets for compact semisimple Lie groups 1999 Michael Field
+ Cocompact subgroups of semisimple Lie groups 1990 Dave Witte
+ PDF Chat A restriction theorem for semisimple Lie groups of rank one 1983 Juan Tirao
+ On subalgebras of maximal rank of semisimple Lie algebras 1995 P. Ya. Grushko
L. A. Osipenko
+ PDF Chat On Semisimple Classes and Component Groups in Type $$\textsf{D}$$ 2023 Marc Cabanes
Britta Späth
+ Hybrid bounds for the sup-norm of automorphic forms in higher rank 2023 Radu Toma
+ On subsemigroups of semisimple Lie groups 1995 D. Kelly-Lyth
M. McCrudden
+ Sup norms of Maass forms on semisimple groups 2014 Simon Marshall
+ PDF Chat A Cohen type inequality for compact Lie groups 1979 Saverio Giulini
Paolo M. Soardi
Giancarlo Travaglini
+ PDF Chat A bound for the orders of centralizers of irreducible subgroups of algebraic groups 2022 Martin W. Liebeck
+ Linearity of dimension functions for semilinear 𝐺-spheres 2002 Ikumitsu Nagasaki