A Pólya–Vinogradov inequality for short character sums

Type: Article

Publication Date: 2020-12-02

Citations: 0

DOI: https://doi.org/10.4153/s0008439520000934

Abstract

Abstract In this paper, we obtain a variation of the Pólya–Vinogradov inequality with the sum restricted to a certain height. Assume $\chi $ to be a primitive character modulo q , $ \epsilon>0$ and $N\le q^{1-\gamma }$ , with $0\le \gamma \le 1/3$ . We prove that $$ \begin{align*} |\sum_{n=1}^N \chi(n) |\le c (\tfrac{1}{3} -\gamma+\epsilon )\sqrt{q}\log q \end{align*} $$ with $c=2/\pi ^2$ if $\chi $ is even and $c=1/\pi $ if $\chi $ is odd. The result is based on the work of Hildebrand and Kerr.

Locations

  • Canadian Mathematical Bulletin - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A Pólya--Vinogradov inequality for short character sums 2020 Matteo Bordignon
+ A P\'{o}lya--Vinogradov inequality for short character sums. 2020 Matteo Bordignon
+ PDF Chat Short Character Sums and the Pólya–Vinogradov Inequality 2020 Alexander P. Mangerel
+ Short Character Sums and the Pólya-Vinogradov Inequality 2019 Alexander P. Mangerel
+ Short Character Sums and the P\'{o}lya-Vinogradov Inequality 2019 Alexander P. Mangerel
+ An explicit Pólya-Vinogradov inequality via Partial Gaussian sums 2019 Matteo Bordignon
Bryce Kerr
+ Large odd order character sums and improvements of the Pólya-Vinogradov inequality 2017 Youness Lamzouri
Alexander P. Mangerel
+ An explicit P\'{o}lya-Vinogradov inequality via Partial Gaussian sums 2019 Matteo Bordignon
Bryce Kerr
+ PDF Chat Partial Gaussian sums and the Pólya–Vinogradov inequality for primitive characters 2021 Matteo Bordignon
+ The Pólya-Vinogradov Inequality 1980 H. Davenport
+ Partial Gaussian sums and the Pólya--Vinogradov inequality for primitive characters 2020 Matteo Bordignon
+ An explicit Pólya-Vinogradov inequality via Partial Gaussian sums 2020 Matteo Bordignon
Bryce Kerr
+ PDF Chat On the Constant in the Pólya-Vinogradov Inequality 1988 Adolf Hildebrand
+ Vinogradov’s sieve and an estimate for an incomplete Kloosterman sum 2021 Maxim Aleksandrovich Korolev
+ Pólya-Vinogradov and the least quadratic nonresidue 2013 Jonathan Bober
Leo Goldmakher
+ Large odd order character sums and improvements of the Pólya-Vinogradov inequality 2022 Youness Lamzouri
Alexander P. Mangerel
+ Explicit Improvements to the Burgess Bound Via Pólya-Vinogradov 2020 Matteo Bordignon
Forrest J. Francis
+ Bounds of Short Character Sums 1999 Sergeĭ Konyagin
Igor E. Shparlinski
+ PDF Chat Three conjectures about character sums 2023 Andrew Granville
Alexander P. Mangerel
+ PDF Chat Character Sums to Smooth Moduli are Small 2010 Leo Goldmakher

Works That Cite This (0)

Action Title Year Authors