The Approximate Loebl--Komlós--Sós Conjecture IV: Embedding Techniques and the Proof of the Main Result

Type: Article

Publication Date: 2017-01-01

Citations: 26

DOI: https://doi.org/10.1137/140982878

Abstract

This is the last of a series of four papers in which we prove the following relaxation of the Loebl--Komlós--Sós conjecture: For every $\alpha>0$ there exists a number $k_0$ such that for every $k>k_0$, every $n$-vertex graph $G$ with at least $(\frac12+\alpha)n$ vertices of degree at least $(1+\alpha)k$ contains each tree $T$ of order $k$ as a subgraph. In the first two papers of this series, we decomposed the host graph $G$ and found a suitable combinatorial structure inside the decomposition. In the third paper, we refined this structure and proved that any graph satisfying the conditions of the above approximate version of the Loebl--Komlós--Sós conjecture contains one of ten specific configurations. In this paper we embed the tree $T$ in each of the ten configurations.

Locations

  • SIAM Journal on Discrete Mathematics - View
  • Repository of the Academy's Library (Library of the Hungarian Academy of Sciences) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture III: The Finer Structure of LKS Graphs 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture I: The Sparse Decomposition 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat An approximate version of the Loebl-Komlós-Sós conjecture 2007 Diana Piguet
Maya Stein
+ PDF Chat The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs 2015 Endre Szemerédi
Maya Stein
Miklós Simonovits
Diana Piguet
Jan Hladký
+ PDF Chat The Approximate Loebl--Komlós--Sós Conjecture II: The Rough Structure of LKS Graphs 2017 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ The approximate Loebl-Komlós-Sós Conjecture 2012 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ PDF Chat An approximate version of the Loebl–Komlós–Sós conjecture 2011 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ An approximate version of the Loebl-Komlos-Sos conjecture 2007 Diana Piguet
Maya Stein
+ Loebl–Komlós–Sós Conjecture: Dense case 2015 Jan Hladký
Diana Piguet
+ A Local Approach to the Erdös--Sós Conjecture 2019 Václav Rozhoň
+ PDF Chat Loebl-Komlós-Sós Conjecture: dense case 2009 Oliver Cooley
Jan Hladký
Diana Piguet
+ Proof of the Loebl–Komlós–Sós conjecture for large, dense graphs 2009 Oliver Cooley
+ The approximate Loebl-Komlós-Sós Conjecture 2012 Jan Hladký
János Komlós
Diana Piguet
Miklós Simonovits
Maya Stein
Endre Szemerédi
+ AND EMBEDDING TREES IN SPARSE GRAPHS 2015 Jan Hladk
Diana Piguet
Mikl ́ Os
Maya Stein
+ A local approach to the Erdős-Sós conjecture 2018 Václav Rozhoň
+ PDF Chat Embedding Nearly Spanning Trees 2024 Bruce Reed
Maya Stein
+ A local approach to the Erd\H{o}s-S\'os conjecture 2018 Václav Rozhoň
+ PDF Chat Degree Conditions for Embedding Trees 2019 Guido Besomi
Matías Pavez‐Signé
Maya Stein
+ Constructing Trees in Graphs whose Complement has no <b><i>K</i></b><sub>2,<b><i>s</i></b></sub> 2002 Edward Dobson