Expected number of nodal components for cut‐off fractional Gaussian fields

Type: Article

Publication Date: 2018-11-19

Citations: 5

DOI: https://doi.org/10.1112/jlms.12190

Abstract

Let $({\mathcal{X}},g)$ be a closed Riemmanian manifold of dimension $n>0$. Let $\Delta$ be the Laplacian on ${\mathcal{X}}$, and let $(e\_k)\_k$ be an $L^2$-orthonormal and dense family of Laplace eigenfunctions with respective eigenvalues $(\lambda\_k)\_k$. We assume that $(\lambda\_k)\_k$ is non-decreasing and that the $e\_k$ are real-valued. Let $(\xi\_k)\_k$ be a sequence of iid $\mathcal{N}(0,1)$ random variables. For each $L>0$ and $s\in{\mathbb{R}}$, possibly negative, set\[f^s\_L=\sum\_{0<\lambda\_j\leq L}\lambda\_j^{-\frac{s}{2}}\xi\_je\_j\, .\]Then, $f\_L^s$ is almost surely regular on its zero set. Let $N\_L$ be the number of connected components of its zero set. If $s<\frac{n}{2}$, then we deduce that there exists $\nu=\nu(n,s)>0$ such that $N\_L\sim \nu {Vol}\_g({\mathcal{X}})L^{n/2}$ in $L^1$ and almost surely. In particular, ${\mathbb{E}}[N\_L]\asymp L^{n/2}$. On the other hand, we prove that if $s=\frac{n}{2}$ then\[{\mathbb{E}}[N\_L]\asymp \frac{L^{n/2}}{\sqrt{\ln\left(L^{1/2}\right)}}\, .\]In the latter case, we also obtain an upper bound for the expected Euler characteristic of the zero set of $f\_L^s$ and for its Betti numbers. In the case $s>n/2$, the pointwise variance of $f\_L^s$ converges so it is not expected to have universal behavior as $L\rightarrow+\infty$.

Locations

  • Journal of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Hole probability for nodal sets of the cut-off Gaussian Free Field 2017 Alejandro Rivera
+ Concentration for nodal component count of Gaussian Laplace eigenfunctions 2020 Lakshmi Priya
+ Concentration for nodal component count of Gaussian Laplace eigenfunctions 2020 Lakshmi Priya
+ PDF Chat Universal Components of Random Nodal Sets 2016 Damien Gayet
Jean-Yves Welschinger
+ PDF Chat On the number of nodal domains of random spherical harmonics 2009 Fëdor Nazarov
Mikhail Sodin
+ Direction distribution for nodal components of random band-limited functions on surfaces 2020 Suresh Eswarathasan
Igor Wigman
+ Nodal area distribution for arithmetic random waves 2019 Valentina Cammarota
+ PDF Chat On the absolute continuity of random nodal volumes 2020 Jürgen Angst
Guillaume Poly
+ On the universality of the Nazarov-Sodin constant 2022 Andrea Sartori
+ PDF Chat The Number of Nodal Components of Arithmetic Random Waves 2016 Yoni Rozenshein
+ PDF Chat On the universality of the Nazarov-Sodin constant 2024 Andrea Sartori
+ Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure 2016 Alexander Logunov
+ Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure 2016 А. А. Логунов
+ PDF Chat Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure 2017 Alexander Logunov
+ Expected nodal volume for non-Gaussian random band-limited functions 2021 Zakhar Kabluchko
Andrea Sartori
Igor Wigman
+ On the absolute continuity of random nodal volumes 2018 Jürgen Angst
Guillaume Poly
+ On the absolute continuity of random nodal volumes 2018 Jürgen Angst
Guillaume Poly
+ PDF Chat Expected Values of Eigenfunction Periods 2015 Suresh Eswarathasan
+ Expected nodal volume for non-Gaussian random band-limited functions. 2021 Zakhar Kabluchko
Andrea Sartori
Igor Wigman
+ PDF Chat Nodal deficiency of random spherical harmonics in presence of boundary 2021 Valentina Cammarota
Domenico Marinucci
Igor Wigman