On the concentration of certain additive functions

Type: Article

Publication Date: 2014-01-01

Citations: 3

DOI: https://doi.org/10.4064/aa162-3-2

Abstract

We study the concentration of the distribution of an additive function $f$ when the sequence of prime values of $f$ decays fast and has good spacing properties. In particular, we prove a conjecture by Erdős and Kátai on the concentration of $f(n)=\sum_{p|

Locations

  • Acta Arithmetica - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Additive functions in short intervals, gaps and a conjecture of Erdős 2021 Alexander P. Mangerel
+ Additive functions in short intervals, gaps and a conjecture of Erd\H{o}s 2021 Alexander P. Mangerel
+ On a problem of P. Erdös 1970 И. Катаи
+ PDF Chat Sur la concentration de certaines fonctions additives 2011 Régis de la Bretèche
Gérald Tenenbaum
+ PDF Chat The concentration function of additive functions on shifted primes 1994 P. D. T. A. Elliott
+ PDF Chat On a conjecture of Erdös about additive functions 2015 Karl‐Heinz Indlekofer
+ PDF Chat On the proximity of additive and multiplicative functions 2015 Jean-Marie De Koninck
Nicolas Doyon
Patrick Letendre
+ Moderate and Large Deviations for the Erd\H{o}s-Kac Theorem 2013 Behzad Mehrdad
Lingjiong Zhu
+ An Erdős-Kac theorem for Smooth and Ultra-Smooth integers 2017 Marzieh Mehdizadeh
+ The Erdös — Wintner Theorem 1979 P. D. T. A. Elliott
+ A probabilistic approach to the Erdös-Kac theorem for additive functions 2021 Louis H. Y. Chen
Arturo Jaramillo
Xiaochuan Yang
+ Moderate and Large Deviations for the Erdős-Kac Theorem 2013 Behzad Mehrdad
Lingjiong Zhu
+ PDF Chat Additive functions in short intervals, gaps and a conjecture of Erdős 2022 Alexander P. Mangerel
+ On the Bivariate Erdős-Kac Theorem and Correlations of the Möbius Function 2016 Alexander P. Mangerel
+ MODERATE AND LARGE DEVIATIONS FOR THE ERDŐS–KAC THEOREM 2016 Behzad Mehrdad
Lingjiong Zhu
+ On the multiplicative Erdős discrepancy problem 2010 Michael James Coons
+ The distribution of sums and products of additive functions 2018 Greg Martin
Lee Troupe
+ On the concentration of additive functions 1980 Imre Z. Ruzsa
+ PDF Chat A localized Erdős-Kac theorem for $\omega_y(p+a)$ 2023 Anup B. Dixit
M Murty
+ PDF Chat On an Additive Prime Divisor Function of Alladi and Erdős 2017 Dorian Goldfeld