Resolving isospectral ‘drums’ by counting nodal domains

Type: Article

Publication Date: 2005-09-28

Citations: 37

DOI: https://doi.org/10.1088/0305-4470/38/41/006

Abstract

Several types of systems were put forward during the past decades to show that there exist {\it isospectral} systems which are {\it metrically} different. One important class consists of Laplace Beltrami operators for pairs of flat tori in $\mathbb{R}^n$ with $n\geq 4$. We propose that the spectral ambiguity can be resolved by comparing the nodal sequences (the numbers of nodal domains of eigenfunctions, arranged by increasing eigenvalues). In the case of isospectral flat tori in four dimensions - where a 4-parameters family of isospectral pairs is known- we provide heuristic arguments supported by numerical simulations to support the conjecture that the isospectrality is resolved by the nodal count. Thus - one can {\it count} the shape of a drum (if it is designed as a flat torus in four dimensions...).

Locations

  • Journal of Physics A Mathematical and General - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Comment on ‘Resolving isospectral ‘drums’ by counting nodal domains’ 2007 J. Brüning
David Klawonn
Christof Puhle
+ Nodal domains count for toral eigenfunctions at Planck-scale 2019 Andrea Sartori
+ PDF Chat The isospectral problem for flat tori from three perspectives 2022 Erik Nilsson
Julie Rowlett
Felix Rydell
+ The isospectral problem for flat tori from three perspectives 2021 Erik Nilsson
Julie Rowlett
Felix Rydell
+ Donut choirs and Schiemann's symphony: An imaginative investigation of the isospectral problem for flat tori 2021 Erik Nilsson
Julie Rowlett
Felix Rydell
+ PDF Chat On the nodal sets of toral eigenfunctions 2010 Jean Bourgain
Zeév Rudnick
+ PDF Chat Hearing shapes of drums: Mathematical and physical aspects of isospectrality 2010 Olivier Giraud
Koen Thas
+ PDF Chat Analytical aspects of isospectral drums 2014 Wolfgang Arendt
A. F. M. ter Elst
James B. Kennedy
+ Nodal sets for random eigenfunctions on the torus 2006 Ferenc Oravecz
Zeév Rudnick
Igor Wigman
+ Spectral Methods in Infinite-Dimensional Analysis 1995 Yu. M. Berezansky
Yuri G. Kondratiev
+ Spectral Methods in Infinite-Dimensional Analysis 1995 Ю. М. Березанский
I︠u︡. G. Kondratʹev
+ Equivalence between isospectrality and iso-length spectrality of a certain class of planar billiard domains 2001 Yuichiro Okada
Akira Shudo
+ PDF Chat Excitations of the torelon 2004 Keisuke Jimmy Juge
Julius Kuti
Francesco Maresca
Colin Morningstar
Mike Peardon
+ Métodos geométricos en teorías clásicas de campos e integración numérica 2005 Aitor Santamaria Merino
+ PDF Chat Nodal Sets of Eigenfunctions of Sub-Laplacians 2023 Suresh Eswarathasan
Cyril Letrouit
+ Finitely Isospectral Perturbation of Rectangular Domains 1992 Shin Nakamura
Hideo Soga
+ Isospectral Domains in Euclidean 3-Space 2012 Christopher Cox
+ Correlations of Eigenvalues on¶Multi-Dimensional Flat Tori 2000 Jeffrey M. VanderKam
+ PDF Chat Nodal sets of Steklov eigenfunctions 2015 Katarína Bellová
Fang-Hua Lin
+ You Can’t Hear the Shape of a Manifold 1992 Carolyn S. Gordon