Bounds on layer potentials with rough inputs for higher order elliptic equations

Type: Article

Publication Date: 2019-04-07

Citations: 8

DOI: https://doi.org/10.1112/plms.12241

Abstract

In this paper, we establish square-function estimates on the double and single layer potentials with rough inputs for divergence form elliptic operators, of arbitrary even order 2 m , with variable t-independent coefficients in the upper half-space.

Locations

  • Proceedings of the London Mathematical Society - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Square function estimates on layer potentials for higher-order elliptic equations 2015 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat Square function estimates on layer potentials for higher‐order elliptic equations 2017 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations 2018 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ PDF Chat A good inequality for double layer potentials of surfaces that are not Lipschitz 1989 Basil C. Krikeles
+ PDF Chat Nontangential Estimates on Layer Potentials and the Neumann Problem for Higher-Order Elliptic Equations 2020 Ariel Barton
Steve Hofmann
Svitlana Mayboroda
+ The Single Multi-Layer Potential Operator 2012 Irina Mitrea
Marius Mitrea
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ Sharp norm estimates of layer potentials and operators at high frequency 2014 Jeffrey Galkowski
Xiaolong Han
Melissa Tacy
+ Simple Layer Potentials for Elliptic Equations of Higher Order 1991 Gaetano Fichera
+ PDF Chat Publisher Correction to: $$L^2$$-Boundedness of Gradients of Single Layer Potentials for Elliptic Operators with Coefficients of Dini Mean Oscillation-Type 2023 Alejandro Molero
Mihalis Mourgoglou
Carmelo Puliatti
Xavier Tolsa
+ Analyticity of layer potentials and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> solvability of boundary value problems for divergence form elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mo>∞</mml:mo></mml:msup></mml:math> coefficients 2010 M. Angeles Alfonseca
Pascal Auscher
Andreas Axelsson
Steve Hofmann
Seick Kim
+ Layer potentials and boundary value problems for elliptic equations with complex $L^{\infty}$ coefficients satisfying the small Carleson measure norm condition 2013 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Single Layer Operators for $$ \mathcal {L}$$ and Estimates for $$ \mathcal {L}^{-1}$$ 2023 Pascal Auscher
Moritz Egert
+ Critical Perturbations for Second Order Elliptic Operators. Part II: Non-tangential maximal function estimates 2023 Simon Bortz
Steve Hofmann
José Luis Luna García
Svitlana Mayboroda
Bruno Poggi
+ Boundedness and Invertibility of Layer Potential Operators 2022 Juan MarĂ­n
José María Martell
Dorina Mitrea
Irina Mitrea
Marius Mitrea
+ Layer potentials and boundary value problems for elliptic equations with complex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msup></mml:math> coefficients satisfying the small Carleson measure norm condition 2014 Steve Hofmann
Svitlana Mayboroda
Mihalis Mourgoglou
+ Sharp norm estimates of layer potentials and operators at high frequency 2015 Xiaolong Han
Melissa Tacy
+ PDF Chat L2-Boundedness of Gradients of Single Layer Potentials for Elliptic Operators with Coefficients of Dini Mean Oscillation-Type 2023 Alejandro Molero
Mihalis Mourgoglou
Carmelo Puliatti
Xavier Tolsa