Type: Article
Publication Date: 2015-11-03
Citations: 33
DOI: https://doi.org/10.1364/ao.54.009446
Interferometric wavelength meters have attained frequency resolutions down to the megahertz range. In particular, Fizeau interferometers, which have no moving parts, are becoming a popular tool for laser characterization and stabilization. In this paper, we characterize such a wavelength meter using an ultrastable laser in terms of relative frequency instability σ(y)(τ) and demonstrate that it can achieve a short-term instability σ(y)(1s)≈2×10(-10) and a frequency drift of order 10 MHz/day. We use this apparatus to demonstrate frequency control of a near-infrared laser, where a frequency instability below 3×10(-10) from 1 to 2000 s is achieved. Such performance is, for example, adequate for ion trapping and atom cooling experiments.