A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2D

Type: Article

Publication Date: 2012-07-31

Citations: 33

DOI: https://doi.org/10.1088/0266-5611/28/9/095005

Abstract

A direct reconstruction algorithm for complex conductivities in $W^{2,\infty}(\Omega)$, where $\Omega$ is a bounded, simply connected Lipschitz domain in $\mathbb{R}^2$, is presented. The framework is based on the uniqueness proof by Francini [Inverse Problems 20 2000], but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.

Locations

  • Inverse Problems - View
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A direct d-bar reconstruction algorithm for complex admittivities in w2,infin(omega) for the 2-d eit problem 2012 Jennifer L. Mueller
Sarah Jane Hamilton
+ Reconstructing conductivities with boundary corrected D-bar method 2011 Samuli Siltanen
Janne P. Tamminen
+ Reconstructing conductivities with boundary corrected D-bar method 2011 Samuli Siltanen
Janne P. Tamminen
+ A new regularization of the D-bar method with complex conductivity 2020 Toufic El Arwadi
Toni Sayah
+ PDF Chat Regularized D-bar method for the inverse conductivity problem 2009 Kim Knudsen
Matti Lassas
Jennifer L. Mueller
Samuli Siltanen
+ PDF Chat About the D-Bar reconstruction method for complex conductivities : error estimates 2018 S Kontar
Houssam Chrayteh
Toufic El Arwadi
Jean-Marc Sac-ÉpĂ©e
+ D-Bar Method for Smooth and Nonsmooth Conductivities 2013 Mohamed Amine Cherif
Toufic El Arwadi
+ Error Estimates for Reconstructed Conductivities via the D-bar Method 2011 Toufic El Arwadi
+ PDF Chat Reconstructing conductivities with boundary corrected D-bar method 2014 Samuli Siltanen
Janne P. Tamminen
+ PDF Chat Towards a d-bar reconstruction method for three-dimensional EIT 2006 Horia D. Cornean
K. Knudsen
S. Siltanen
+ PDF Chat Towards a d-bar reconstruction method for three-dimensional EIT 2006 Horia D. Cornean
Kim Knudsen
Samuli Siltanen
+ Incorporating a Spatial Prior into Nonlinear D-Bar EIT imaging for Complex Admittivities 2016 Sarah Jane Hamilton
Jennifer L. Mueller
Melody Alsaker
+ Incorporating a Spatial Prior into Nonlinear D-Bar EIT imaging for Complex Admittivities 2016 Sarah Jane Hamilton
Jennifer L. Mueller
Melody Alsaker
+ PDF Chat Incorporating a Spatial Prior into Nonlinear D-Bar EIT Imaging for Complex Admittivities 2016 Sarah Jane Hamilton
Jennifer L. Mueller
Melody Alsaker
+ The D-bar method for electrical impedance tomography—demystified 2020 Jennifer L. Mueller
Samuli Siltanen
+ EIT reconstructions and Faddeev solutions for a numerically simulated phantom chest. 2004 Jennifer L. Mueller
+ A Regularization Scheme for 2D Conductivity Imaging by the D-Bar Method 2019 Toufic El Arwadi
Toni Sayah
+ PDF Chat A direct reconstruction method for anisotropic electrical impedance tomography 2014 Sarah Jane Hamilton
Matti Lassas
Samuli Siltanen
+ Reconstruction of Organ Boundaries With Deep Learning in the D-Bar Method for Electrical Impedance Tomography 2020 Michael Capps
Jennifer L. Mueller
+ Direct electrical impedance tomography for nonsmooth conductivities 2011 Kari Astala
Jennifer L. Mueller
Lassi PaïvÀrinta
Allan PerÀmÀki
Samuli Siltanen