Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables

Type: Article

Publication Date: 2010-01-01

Citations: 187

DOI: https://doi.org/10.1137/090760155

Abstract

We consider optimization problems with polynomial inequality constraints in non-commuting variables. These non-commuting variables are viewed as bounded operators on a Hilbert space whose dimension is not fixed and the associated polynomial inequalities as semidefinite positivity constraints. Such problems arise naturally in quantum theory and quantum information science. To solve them, we introduce a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We also introduce a criterion to detect whether the global optimum is reached at a given relaxation step and show how to extract a global optimizer from the solution of the corresponding semidefinite programming problem.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • SIAM Journal on Optimization - View

Similar Works

Action Title Year Authors
+ SDP Relaxations for Non-Commutative Polynomial Optimization 2011 Miguel Navascués
Stefano Pironio
Antonio Acín
+ Sparse Polynomial Optimization: Theory and Practice 2022 Victor Magron
Jie Wang
+ Karush-Kuhn-Tucker conditions for non-commutative optimization problems 2023 Mateus Araújo
Igor Klep
Tamás Vértesi
Andrew J. P. Garner
Miguel Navascués
+ PDF Chat Upper bound hierarchies for noncommutative polynomial optimization 2024 Igor Klep
Victor Magron
Gaël Massé
Jurij Volčič
+ SymDPoly: symmetry-adapted moment relaxations for noncommutative polynomial optimization 2018 Denis Rosset
+ PDF Chat Non-commutative optimization problems with differential constraints 2024 Mateus Araújo
Andrew J. P. Garner
Miguel Navascués
+ SymDPoly: symmetry-adapted moment relaxations for noncommutative polynomial optimization 2018 Denis Rosset
+ PDF Chat Semidefinite programming relaxations for quantum correlations 2024 Armin Tavakoli
Alejandro Pozas-Kerstjens
Peter Brown
Mateus Araújo
+ Hierarchies for Semidefinite Optimization in $\mathcal{C}^\star$-Algebras 2023 Gereon Koßmann
René Schwonnek
Jonathan Steinberg
+ PDF Chat Optimization over trace polynomials 2020 Igor Klep
Victor Magron
Jurij Volčič
+ Semidefinite programming relaxations for quantum correlations 2023 Armin Tavakoli
Alejandro Pozas-Kerstjens
Peter Brown
Mateus Araújo
+ The Constant Trace Property in Noncommutative Optimization 2021 Ngoc Hoang Anh Mai
Abhishek Bhardwaj
Victor Magron
+ The Constant Trace Property in Noncommutative Optimization 2021 Ngoc Hoang Anh
Abhishek Bhardwaj
Victor Magron
+ PDF Chat The Constant Trace Property in Noncommutative Optimization 2021 Ngoc Hoang Anh
Abhishek Bhardwaj
Victor Magron
+ Exploiting term sparsity in Noncommutative Polynomial Optimization 2020 Jie Wang
Victor Magron
+ Quantum Optimal Control via Magnus Expansion: The Non-Commutative Polynomial Optimization Problem 2020 Jakub Mareček
Jiří Vala
+ Sparse Noncommutative Polynomial Optimization 2019 Igor Klep
Victor Magron
Janez Povh
+ PDF Chat Sparse noncommutative polynomial optimization 2021 Igor Klep
Victor Magron
Janez Povh
+ Sparse Noncommutative Polynomial Optimization 2019 Igor Klep
Victor Magron
Janez Povh
+ Expanding the reach of quantum optimization with fermionic embeddings 2023 Andrew Zhao
Nicholas C. Rubin