3-tuples have at most 7 prime factors infinitely often

Type: Article

Publication Date: 2013-06-18

Citations: 9

DOI: https://doi.org/10.1017/s0305004113000339

Abstract

Let $L_1$, $L_2$ $L_3$ be integer linear functions with no fixed prime divisor. We show there are infinitely many $n$ for which the product $L_1(n)L_2(n)L_3(n)$ has at most 7 prime factors, improving a result of Porter. We do this by means of a weighted sieve based upon the Diamond-Halberstam-Richert multidimensional sieve.

Locations

  • Mathematical Proceedings of the Cambridge Philosophical Society - View
  • arXiv (Cornell University) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Almost-prime $k$-tuples 2012 James E. Maynard
+ Almost-prime $k$-tuples 2012 James Maynard
+ The linear sieve 1996 Melvyn B. Nathanson
+ ALMOST‐PRIME ‐TUPLES 2013 James Maynard
+ Variants of the Selberg sieve, and almost prime k-tuples 2022 Paweł Lewulis
+ An elementary sieve 2007 Damián Gulich
Gustavo Funes
Leopoldo Garavaglia
Beatriz Ruíz
M. Garavaglia
+ An elementary sieve 2007 Damián Gulich
Gustavo Funes
Leopoldo Garavaglia
Beatriz Ruíz
M. Garavaglia
+ Prime Number Sieves 2020 G. Reitsma
+ Representing an integer as the sum of a prime and the product of two small factors 2020 Roger C. Baker
Glyn Harman
+ On an almost-prime sieve 2019 Hieu T. Ngo
+ Representing an integer as the sum of a prime and the product of two small factors. 2020 Roger C. Baker
Glyn Harman
+ PDF Chat Almost primes between all squares 2025 Adrian W. Dudek
Daniel R. Johnston
+ A sieve problem over the Gaussian integers 2010 D. R. Heath‐Brown
+ A sieve problem over the Gaussian integers 2010 Waldemar Schlackow
+ An Introduction to Prime Number Sieves 1990 Jonathan Sorenson
+ The Sieve of Prime Numbers Using Tables 2014 Barar Stelian Liviu
+ Some Applications of Sieves of Dimension exceeding 1 1997 Harold G. Diamond
H. Halberstam
+ A Sieve Method for Factoring Numbers of the Form n 2 + 1 1959 Daniel Shanks
+ A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture 2014 David Lowry-Duda
+ A Friendly Intro to Sieves with a Look Towards Recent Progress on the Twin Primes Conjecture 2014 David Lowry-Duda