Adaptive quantum computation in changing environments using projective simulation

Type: Article

Publication Date: 2015-08-11

Citations: 43

DOI: https://doi.org/10.1038/srep12874

Abstract

Abstract Quantum information processing devices need to be robust and stable against external noise and internal imperfections to ensure correct operation. In a setting of measurement-based quantum computation, we explore how an intelligent agent endowed with a projective simulator can act as controller to adapt measurement directions to an external stray field of unknown magnitude in a fixed direction. We assess the agent’s learning behavior in static and time-varying fields and explore composition strategies in the projective simulator to improve the agent’s performance. We demonstrate the applicability by correcting for stray fields in a measurement-based algorithm for Grover’s search. Thereby, we lay out a path for adaptive controllers based on intelligent agents for quantum information tasks.

Locations

  • Scientific Reports - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Using Quantum Switches to Mitigate Noise in Grover's Search Algorithm 2024 Suryansh Srivastava
Arun Kumar Pati
Samyadeb Bhattacharya
Indranil Chakrabarty
+ PDF Chat Measurement-Based Adaptation Protocol with Quantum Reinforcement Learning in a Rigetti Quantum Computer 2020 Julio Olivares-Sánchez
J. Casanova
E. Solano
Lucas Lamata
+ PDF Chat An Interaction-Free Quantum Measurement-Driven Engine 2020 Cyril Elouard
Mordecai Waegell
Benjamin Huard
Andrew N. Jordan
+ Artificial Intelligence and Machine Learning for Quantum Technologies 2022 Mario Krenn
Jonas Landgraf
Thomas Foesel
Florian Marquardt
+ PDF Chat Feedback ansatz for adaptive-feedback quantum metrology training with machine learning 2020 Yi Peng
Heng Fan
+ PDF Chat Autonomous adaptive noise characterization in quantum computers 2019 Riddhi Swaroop Gupta
Alistair Milne
Claire Edmunds
Cornelius Hempel
Michael J. Biercuk
+ PDF Chat Measurement-based quantum computation 2009 Hans J. Briegel
Dan E. Browne
Wolfgang Dür
Robert Raussendorf
M. Van den Nest
+ PDF Chat Measurement-based adaptation protocol with quantum reinforcement learning 2018 F. Albarrán-Arriagada
J. C. Retamal
E. Solano
Lucas Lamata
+ PDF Chat Quantum Computation 2024 Barry C. Sanders
+ PDF Chat Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors 2021 Nelson Filipe Costa
Yasser Omar
Aidar Sultanov
G. S. Paraoanu
+ PDF Chat Robust quantum control in games: An adversarial learning approach 2020 Xiaozhen Ge
Haijin Ding
Herschel Rabitz
Re-Bing Wu
+ PDF Chat Quantum learning algorithms for quantum measurements 2011 Alessandro Bisio
Giacomo Mauro D’Ariano
Paolo Perinotti
Michal Sedlák
+ PDF Chat Using Quantum Switches to Mitigate Noise in Grover's Search Algorithm 2024 Suryansh Srivastava
Arun Kumar Pati
Indranil Chakrabarty
Samyadeb Bhattacharya
+ PDF Chat Computer-inspired quantum experiments 2020 Mario Krenn
Manuel Erhard
Anton Zeilinger
+ Mimicking states with limited resources: passing quantum quiz via global control 2022 P. V. Pyshkin
E. Ya. Sherman
A. Gábris
Lian-Ao Wu
+ ManQala: Game-inspired strategies for quantum state engineering 2023 Onur Danaci
Wenlei Zhang
Robert W. Coleman
William Djakam
Michaela Amoo
Ryan T. Glasser
Brian T. Kirby
Moussa N’Gom
Thomas A. Searles
+ PDF Chat Self-protected quantum algorithms based on quantum state tomography 2008 Lian-Ao Wu
Mark Byrd
+ PDF Chat Efficient quantum algorithm for solving structured problems via multistep quantum computation 2023 Hefeng Wang
Sixia Yu
Hua Xiang
+ Randomized adaptive quantum state preparation 2023 Alicia B. Magann
Sophia E. Economou
Christian Arenz
+ PDF Chat Randomized adaptive quantum state preparation 2023 Alicia B. Magann
Sophia E. Economou
Christian Arenz

Works That Cite This (29)

Action Title Year Authors
+ PDF Chat Retrieving Quantum Information with Active Learning 2020 Yongcheng Ding
José D. Martín‐Guerrero
Mikel Sanz
Rafael Magdalena‐Benedito
Xi Chen
E. Solano
+ PDF Chat Estimation of coherent error sources from stabilizer measurements 2016 Davide Orsucci
Markus Tiersch
Hans J. Briegel
+ PDF Chat Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements 2022 Riccardo Porotti
Antoine Essig
Benjamin Huard
Florian Marquardt
+ PDF Chat Training deep quantum neural networks 2020 Kerstin Beer
Dmytro Bondarenko
Terry Farrelly
Tobias J. Osborne
Robert Salzmann
Daniel Scheiermann
Ramona Wolf
+ PDF Chat Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics 2017 Pantita Palittapongarnpim
Péter Wittek
Ehsan Zahedinejad
Shakib Vedaie
Barry C. Sanders
+ PDF Chat Projective simulation with generalization 2017 Alexey Melnikov
Adi Makmal
Vedran Dunjko
Hans J. Briegel
+ PDF Chat Quantum machine learning 2017 Jacob Biamonte
Péter Wittek
Nicola Pancotti
Patrick Rebentrost
Nathan Wiebe
Seth Lloyd
+ PDF Chat Protocol for secure quantum machine learning at a distant place 2015 Jeongho Bang
Seung-Woo Lee
Hyunseok Jeong
+ PDF Chat Machine Learning for Long-Distance Quantum Communication 2020 Julius Wallnöfer
Alexey Melnikov
Wolfgang Dür
Hans J. Briegel
+ PDF Chat Active learning for the optimal design of multinomial classification in physics 2022 Yongcheng Ding
José D. Martín‐Guerrero
Yujing Song
Rafael Magdalena‐Benedito
Xi Chen