The geometry of maximal representations of surface groups into SO0(2,n)

Type: Article

Publication Date: 2019-09-30

Citations: 32

DOI: https://doi.org/10.1215/00127094-2019-0052

Abstract

In this paper, we study the geometric and dynamical properties of maximal representations of surface groups into Hermitian Lie groups of rank 2. Combining tools from Higgs bundle theory, the theory of Anosov representations, and pseudo-Riemannian geometry, we obtain various results of interest. We prove that these representations are holonomies of certain geometric structures, recovering results of Guichard and Wienhard. We also prove that their length spectrum is uniformly bigger than that of a suitably chosen Fuchsian representation, extending a previous work of the second author. Finally, we show that these representations preserve a unique minimal surface in the symmetric space, extending a theorem of Labourie for Hitchin representations in rank 2.

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Maximal Representations of Surface Groups: Symplectic Anosov Structures 2005 Marc Burger
Alessandra Iozzi
François Labourie
Anna Wienhard
+ Maximal Representations of Surface Groups: Symplectic Anosov Structures 2005 Marc Burger
Alessandra Iozzi
François Labourie
Anna Wienhard
+ PDF Chat Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces 2007 Steven B. Bradlow
Oscar García‐Prada
Peter B. Gothen
+ Riemannian geometry of maximal surface group representations acting on pseudo-hyperbolic space 2023 Nicholas Rungi
+ PDF Chat The geometry of maximal representations of surface groups into $\mathrm{SO}_0(2,n)$ 2019 B. Collier
Nicolas Tholozan
Jérémy Toulisse
+ SO(n,n+1)-surface group representations and their Higgs bundles 2017 B. Collier
+ SO(n,n+1)-surface group representations and their Higgs bundles 2017 B. Collier
+ Surface group representations with maximal Toledo invariant Sur les représentations d'un groupe de surface compacte avec invariant de Toledo maximal 2003 Marc Burger
Alessandra Iozzi
Anna Wienhard
+ Riemannian geometry of maximal surface group representations acting on pseudo-hyperbolic space 2024 Nicholas Rungi
+ Spin representations for Hermitian Lie groups 2019 Alexis Gilles
+ PDF Chat Non-maximal Anosov Representations from Surface Groups to $\mathrm{SO}_0(2,3)$ 2024 Junming Zhang
+ PDF Chat Higgs bundles, pseudo-hyperbolic geometry and maximal representations 2017 Jérémy Toulisse
+ $\mathrm{SO}_0(2,n+1)$-maximal representations and hyperbolic surfaces 2022 Filippo Mazzoli
Gabriele Viaggi
+ PDF Chat Surface group representations with maximal Toledo invariant 2003 Marc Burger
Alessandra Iozzi
Anna Wienhard
+ On the cohomology of uniform arithmetically defined subgroups in SU*(2n) 2011 Joachim Schwermer
Christoph Waldner
+ PDF Chat Surface group representations to SL(2, ℂ) and Higgs bundles with smooth spectral data 2016 Richard Wentworth
Michael Wolf
+ SO(n, n+1)-surface group representations and Higgs bundles 2020 B. Collier
+ PDF Chat Exotic components of SO(p,q) surface group representations, and their Higgs bundle avatars 2018 Marta Aparicio-Arroyo
Steven B. Bradlow
B. Collier
Oscar García‐Prada
Peter B. Gothen
André Oliveira
+ PDF Chat The Action of the Mapping Class Group on Maximal Representations 2006 Anna Wienhard
+ PDF Chat On weakly maximal representations of surface groups 2017 Gabi Ben Simon
Marc Burger
Tobias Hartnick
Alessandra Iozzi
Anna Wienhard