Beta-expansions, natural extensions and multiple tilings associated with Pisot units

Type: Article

Publication Date: 2012-01-06

Citations: 53

DOI: https://doi.org/10.1090/s0002-9947-2012-05362-1

Abstract

From the works of Rauzy and Thurston, we know how to construct (multiple) tilings of some Euclidean space using the conjugates of a Pisot unit $\beta$ and the greedy $\beta$-transformation. In this paper, we consider different transformations generating expansions in base $\beta$, including cases where the associated subshift is not sofic. Under certain mild conditions, we show that they give multiple tilings. We also give a necessary and sufficient condition for the tiling property, generalizing the weak finiteness property (W) for greedy $\beta$-expansions. Remarkably, the symmetric $\beta$-transformation does not satisfy this condition when $\beta$ is the smallest Pisot number or the Tribonacci number. This means that the Pisot conjecture on tilings cannot be extended to the symmetric $\beta$-transformation. Closely related to these (multiple) tilings are natural extensions of the transformations, which have many nice properties: they are invariant under the Lebesgue measure; under certain conditions, they provide Markov partitions of the torus; they characterize the numbers with purely periodic expansion, and they allow determining any digit in an expansion without knowing the other digits.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Beta-expansions, natural extensions and multiple tilings 2009 Charlene Kalle
Wolfgang Steiner
+ PDF Chat Geometric realization and coincidence for reducible non-unimodular Pisot tiling spaces with an application to \beta -shifts 2006 Veronica Baker
Marcy Barge
Jarosław Kwapisz
+ Tilings for Pisot beta numeration 2013 Milton Minervino
Wolfgang Steiner
+ Tilings for Pisot beta numeration 2013 Milton Minervino
Wolfgang Steiner
+ PDF Chat Generalized $\beta$-expansions, substitution tilings, and local finiteness 2007 Natalie Priebe Frank
E. Arthur Robinson
+ Generalized $\beta$-expansions, substitution tilings, and local finiteness 2005 Natalie Priebe Frank
E. Arthur Robinson
+ Tilings associated with beta-numeration and substitutions. 2005 Valérie Berthé
Anne Siegel
+ Generalized $β$-expansions, substitution tilings, and local finiteness 2005 Natalie Priebe Frank
Jr. Robinson
+ Tilings for Pisot beta numeration 2014 Milton Minervino
Wolfgang Steiner
+ Periodic intermediate $\beta$-expansions of Pisot numbers 2020 Blaine Quackenbush
Tony Samuel
Matthew A. West
+ Periodic intermediate $β$-expansions of Pisot numbers 2020 Blaine Quackenbush
Tony Samuel
Matthew A. West
+ PDF Chat Multiple tilings associated to d-Bonacci beta-expansions 2018 Tomáš Hejda
+ PDF Chat Periodic Intermediate β-Expansions of Pisot Numbers 2020 Blaine Quackenbush
Tony Samuel
Matthew West
+ Multiple tilings associated to d-Bonacci beta-expansions. 2015 Tomáš Hejda
+ Aperiodic Tilings, Ergodic Theory, and Rotations 1997 Charles Radin
+ Geometric theory of unimodular Pisot substitutions 2006 Marcy Barge
Jarosław Kwapisz
+ PDF Chat Aperiodic Tilings: Breaking Translational Symmetry 2005 Leonid A. Levin
+ Beta Expansions for Regular Pisot Numbers 2011 Maysum Panju
+ The geometry of non-unit Pisot substitutions 2014 Milton Minervino
Jörg Μ. Thuswaldner
+ The geometry of non-unit Pisot substitutions 2014 Milton Minervino
Jörg Μ. Thuswaldner