Computing Hilbert class polynomials with the Chinese remainder theorem

Type: Article

Publication Date: 2010-05-17

Citations: 109

DOI: https://doi.org/10.1090/s0025-5718-2010-02373-7

Abstract

We present a space-efficient algorithm to compute the Hilbert class polynomial H_D(X) modulo a positive integer P, based on an explicit form of the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis, the algorithm uses O(|D|^(1/2+o(1))log P) space and has an expected running time of O(|D|^(1+o(1)). We describe practical optimizations that allow us to handle larger discriminants than other methods, with |D| as large as 10^13 and h(D) up to 10^6. We apply these results to construct pairing-friendly elliptic curves of prime order, using the CM method.

Locations

  • Mathematics of Computation - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Computing Hilbert class polynomials with the Chinese Remainder Theorem. 2009 Andrew V. Sutherland
+ Computing Hilbert Class Polynomials 2008 Juliana Belding
Reinier Bröker
Andreas Enge
Kristin Lauter
+ PDF Chat Computing Hilbert Class Polynomials 2008 Juliana Belding
Reinier Bröker
Andreas Enge
Kristin Lauter
+ Computing Hilbert Class Polynomials. 2008 Juliana Belding
Reinier Bröker
Andreas Enge
Kristin Lauter
+ PDF Chat Accelerating the CM method 2012 Andrew V. Sutherland
+ Constructing elliptic curves with a given number of points over a finite field 2001 Amod Agashé
Kristin Lauter
Ramarathnam Venkatesan
+ Constructing elliptic curves with a known number of points over a prime field 2001 Amod Agashé
Kristin Lauter
Ramarathnam Venkatesan
+ Constructing elliptic curves with a given number of points over a finite field. 2001 Amod Agashé
Kristin Lauter
Ramarathnam Venkatesan
+ PDF Chat On the Efficient Generation of Prime-Order Elliptic Curves 2009 Elisavet Konstantinou
Aristides Kontogeorgis
Yannis C. Stamatiou
Christos Zaroliagis
+ PDF Chat Generating Elliptic Curves of Prime Order 2001 Erkay Savaş
Thomas A. Schmidt
Çetin Kaya Koç
+ Number theoretic algorithms for elliptic curves 2008 Lawrence C. Washington
Juliana Belding
+ Ramanujan’s class invariants and their use in elliptic curve cryptography 2010 Elisavet Konstantinou
Aristides Kontogeorgis
+ Generating Prime Order Elliptic Curves: Difficulties and Efficiency Considerations 2005 Elisavet Konstantinou
Aristides Kontogeorgis
Yannis C. Stamatiou
Christos Zaroliagis
+ Pairing-Friendly Elliptic Curves of Prime Order. 2005 Paulo S. L. M. Barreto
Michael Naehrig
+ Generalized class polynomials 2022 Marc Houben
Marco Streng
+ Extending Lenstra's Primality Test to CM elliptic curves and a new quasi-quadratic Las Vegas algorithm for primality 2022 T. G. Nageshwar Rao
+ Pairings on hyperelliptic curves 2009 Jennifer S. Balakrishnan
Juliana Belding
Sarah Chisholm
Kirsten Eisentraeger
Katherine E. Stange
Edlyn Teske
+ PAIRINGS ON HYPERELLIPTIC CURVES 2009 Jennifer S. Balakrishnan
Juliana Belding
Sarah Chisholm
Katherine E. Stange
Edlyn Teske
+ PDF Chat Pairings on hyperelliptic curves 2011 Jennifer S. Balakrishnan
Juliana Belding
Sarah Chisholm
Kirsten Eisenträger
Katherine E. Stange
Edlyn Teske
+ Introducing Ramanujan's Class Polynomials in the Generation of Prime Order Elliptic Curves 2008 Elisavet KonstantinouAristides Kontogeorgis