Gaussian distributions, Jacobi group, and Siegel-Jacobi space

Type: Article

Publication Date: 2014-12-01

Citations: 10

DOI: https://doi.org/10.1063/1.4903182

Abstract

Let N be the space of Gaussian distribution functions over ℝ, regarded as a 2-dimensional statistical manifold parameterized by the mean μ and the deviation σ. In this paper, we show that the tangent bundle of N, endowed with its natural Kähler structure, is the Siegel-Jacobi space appearing in the context of Number Theory and Jacobi forms. Geometrical aspects of the Siegel-Jacobi space are discussed in detail (completeness, curvature, group of holomorphic isometries, space of Kähler functions, and relationship to the Jacobi group), and are related to the quantum formalism in its geometrical form, i.e., based on the Kähler structure of the complex projective space. This paper is a continuation of our previous work [M. Molitor, “Remarks on the statistical origin of the geometrical formulation of quantum mechanics,” Int. J. Geom. Methods Mod. Phys. 9(3), 1220001, 9 (2012); M. Molitor, “Information geometry and the hydrodynamical formulation of quantum mechanics,” e-print arXiv (2012); M. Molitor, “Exponential families, Kähler geometry and quantum mechanics,” J. Geom. Phys. 70, 54–80 (2013)], where we studied the quantum formalism from a geometric and information-theoretical point of view.

Locations

  • Journal of Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Exponential families, Kähler geometry and quantum mechanics 2013 Mathieu Molitor
+ PDF Chat Special Issue “Affine differential geometry and Hesse geometry: a tribute and memorial to Jean–Louis Koszul” 2021 Hideyuki Ishi
+ Information geometry and the hydrodynamical formulation of quantum mechanics 2012 Mathieu Molitor
+ Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families 2016 Frédéric Barbaresco
+ Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families 2016 Frédéric Barbaresco
+ PDF Chat Lie Group Cohomology and (Multi)Symplectic Integrators: New Geometric Tools for Lie Group Machine Learning Based on Souriau Geometric Statistical Mechanics 2020 Frédéric Barbaresco
François Gay‐Balmaz
+ PDF Chat Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian Geometry: Applications in Information Geometry for Exponential Families 2016 Frédéric Barbaresco
+ Riemannian and Kählerian Normal Coordinates 2017 Tillmann Jentsch
Gregor Weingart
+ PDF Chat Riemannian and Kählerian normal coordinates 2020 Tillmann Jentsch
Gregor Weingart
+ Koszul Information Geometry & Souriau Lie Group Thermodynamics 2014 Frédéric Barbaresco
+ PDF Chat Link between Lie Group Statistical Mechanics and Thermodynamics of Continua 2016 Géry de Saxcé
+ Lie Group Cohomology and (Multi)Symplectic Integrators : New Geometric Tools for Lie Group Machine Learning based on Souriau Geometric Statistical Mechanics 2020 Frédéric Barbaresco
François Gay‐Balmaz
+ Riemannian exponential and quantization 2023 Jesús Muñoz-Díaz
R.J. Alonso-Blanco
+ Poisson Geometry of the Statistical Frobenius Manifold 2023 Noémie Combe
P. Combe
Hanna Nencka
+ PDF Chat A geometrization of quantum mutual information 2019 Davide Pastorello
+ E. Beggs, S. Majid: “Quantum Riemannian Geometry” 2021 Alexander Schenkel
+ Statistical Einstein manifolds of exponential families with group-invariant potential functions 2019 Linyu Peng
Zhenning Zhang
+ A characterization of the alpha-connections on the statistical manifold of multivariate normal distributions 2023 Shimpei Kobayashi
Yu Ohno
+ PDF Chat Gaussian measures on the of space of Riemannian metrics 2015 Brian Clarke
Dmitry Jakobson
Niky Kamran
Lior Silberman
Jonathan Taylor
+ PDF Chat Kähler-Einstein metrics emerging from free fermions and statistical mechanics 2011 Robert J. Berman