On Non-Periodic Tilings of the Real Line by a Function

Type: Article

Publication Date: 2015-10-05

Citations: 11

DOI: https://doi.org/10.1093/imrn/rnv283

Abstract

It is known that a positive, compactly supported function |$f \in L^1(\mathbb R)$| can tile by translations only if the translation set is a finite union of periodic sets. We prove that this is not the case if |$f$| is allowed to have unbounded support. On the other hand, we also show that if the translation set has finite local complexity, then it must be periodic, even if the support of |$f$| is unbounded.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ An example concerning Fourier analytic criteria for translational tiling 2020 Nir Lev
+ PDF Chat An example concerning Fourier analytic criteria for translational tiling 2021 Nir Lev
+ PDF Chat The Structure of Multiplicative Tilings of the Real Line 2018 Mihail N. Kolountzakis
Yang Wang
+ A counterexample to the periodic tiling conjecture (announcement) 2022 Rachel Greenfeld
Terence Tao
+ Constructive description of a class of periodic functions on the real line 2023 Ильдар Хамитович Мусин
+ Constructive Description of a Class of Periodic Functions on the Real Line 2023 I. Kh. Musin
+ Tiling, spectrality and aperiodicity of connected sets 2023 Rachel Greenfeld
Mihail N. Kolountzakis
+ The structure of multiplicative tilings of the real line 2017 Mihail N. Kolountzakis
Yang Wang
+ Finitely normal families of integer translations 1996 Jeong-Heon Kim
+ Almost Periodic Functions with Values in a Non-locally Convex Space 2021 Gaston M. N’Guérékata
+ Real Periodic Functions 1966 R. H. Cox
Lynn C. Kurtz
+ PDF Chat Tiling by translates of a function: results and open problems 2021 Mihail N. Kolountzakis
Nir Lev
+ Local translations associated to spectral sets 2013 Dorin Ervin Dutkay
John Haussermann
+ PDF Chat Local translations associated to spectral sets 2014 Dorin Ervin Dutkay
John Haussermann
+ Periodicity and decidability of tilings of ℤ2 2020 Siddhartha Bhattacharya
+ PDF Chat Quasiperiodicity and Non-computability in Tilings 2015 Bruno Durand
Andrei Romashchenko
+ PDF Chat A Metric Characterisation of Repulsive Tilings 2015 Jean Savinien
+ Almost Periodic Functions with Values in a Locally Convex Space 2021 Gaston M. N’Guérékata
+ Almost Periodic Functions with Values in a Linear Topological Space 2001 Gaston M. N’Guérékata
+ PDF Chat Periodicity and decidability of translational tilings by rational polygonal sets 2024 Jaume de Dios Pont
Jan Grebík
Rachel Greenfeld
José Madrid