Type: Article
Publication Date: 2009-12-01
Citations: 40
DOI: https://doi.org/10.1198/jasa.2009.tm08368
This paper introduces an open-ended sequential algorithm for computing the p-value of a test using Monte Carlo simulation. It guarantees that the resampling risk, the probability of a different decision than the one based on the theoretical p-value, is uniformly bounded by an arbitrarily small constant. Previously suggested sequential or non-sequential algorithms, using a bounded sample size, do not have this property. Although the algorithm is open-ended, the expected number of steps is finite, except when the p-value is on the threshold between rejecting and not rejecting. The algorithm is suitable as standard for implementing tests that require (re-)sampling. It can also be used in other situations: to check whether a test is conservative, iteratively to implement double bootstrap tests, and to determine the sample size required for a certain power.