Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards*

Type: Article

Publication Date: 2019-08-30

Citations: 5

DOI: https://doi.org/10.1088/1674-1056/ab3f96

View Chat PDF

Abstract

We report on the experimental investigation of the properties of the eigenvalues and wavefunctions and the fluctuation properties of the scattering matrix of closed and open billiards, respectively, of which the classical dynamics undergoes a transition from integrable via almost integrable to fully chaotic. To realize such a system we chose a billiard with a 60 degree sector shape of which the classical dynamics is integrable, and introduced circular scatterers of varying number, size and position. The spectral properties of generic quantum systems of which the classical counterpart is either integrable or chaotic are universal and well understood. If, however, the classical dynamics is pseudo-integrable or almost-integrable, they exhibit a non-universal intermediate statistics, for which analytical results are known only in a few cases, like, e.g., if it corresponds to semi-Poisson statistics. Since the latter is, above all, clearly distinguishable from those of integrable and chaotic systems our aim was to design a billiard with these features which indeed is achievable by adding just one scatterer of appropriate size and position to the sector billiard. We demonstrate that, while the spectral properties of almost-integrable billiards are sensitive to the classical dynamics, this is not the case for the distribution of the wavefunction components, which was analysed in terms of the strength distribution, and the fluctuation properties of the scattering matrix which coincide with those of typical, fully chaotic systems.

Locations

  • Chinese Physics B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Chaotic dephasing in a double-slit scattering experiment 2010 Zoran Levnajić
TomaĆŸ Prosen
+ PDF Chat Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard 2019 Benjamin Batistić
Črt Lozej
Marko Robnik
+ Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates 2013 Benjamin Batistić
Marko Robnik
+ Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates 2013 Benjamin Batistić
Marko Robnik
+ Classical and Quantum Elliptical Billiards: Mixed Phase Space and Short Correlations in Singlets and Doublets 2023 T. AraĂșjo Lima
R. B. do Carmo
+ PDF Chat Spectral statistics of ‘cellular’ billiards 2011 Boris Gutkin
+ Semiclassical sum rules for matrix elements and response functions in chaotic and in integrable quantum billiards 1999 B. Mehlig
+ PDF Chat Classical and Quantum Elliptical Billiards: Mixed Phase Space and Short Correlations in Singlets and Doublets 2023 T. AraĂșjo Lima
R. B. do Carmo
+ PDF Chat Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates 2013 Benjamin Batistić
Marko Robnik
+ Non ergodic quantum behaviour in classically chaotic 3D billiards 2008 Giulio Casati
TomaĆŸ Prosen
+ Mode fluctuation distribution for spectra of superconducting microwave billiards 1998 H. Alt
Arnd BĂ€cker
C. Dembowski
H.-D. GrÀf
Ralph Hofferbert
H. Rehfeld
A. Richter
+ PDF Chat Weak localization and integrability in ballistic cavities 1993 Harold U. Baranger
Rodolfo A. Jalabert
A. Douglas Stone
+ PDF Chat Understanding quantum scattering properties in terms of purely classical dynamics: Two-dimensional open chaotic billiards 2002 J. A. MĂ©ndez‐BermĂșdez
G. A. Luna‐Acosta
P. Sěba
K. N. Pichugin
+ Barrier billiard and random matrices 2021 E. Bogomolny
+ PDF Chat Level and eigenfunction statistics in billiards with surface disorder 2001 Ya. M. Blanter
A. D. Mirlin
B. A. Muzykantskiǐ
+ PDF Chat Chaos and integrability in triangular billiards 2024 Vijay Balasubramanian
Rathindra Nath Das
Johanna Erdmenger
Zhuo-Yu Xian
+ 1/f noise in experimental Sinai quantum billiards 2005 E. Faleiro
Ulrich Kuhl
Rafael A. Molina
A. Relaño
J. Retamosa
H.J. Stoeckmann
+ PDF Chat Diffusion and Localization in Chaotic Billiards 1996 F. Borgonovi
Giulio Casati
Baowen Li
+ PDF Chat Quantum Scattering and Transport in Classically Chaotic Cavities: An Overview of Old and New Results 2010 Pier A. Mello
VĂ­ctor A. Gopar
J. A. MĂ©ndez‐BermĂșdez
+ Universality in statistical measures of trajectories in classical billiards: Integrable rectangular versus chaotic Sinai and Bunimovich billiards 2009 Jean‐François Laprise
Ahmad Hosseinizadeh
H. Kröger
Reza Zomorrodi

Citing (33)

Action Title Year Authors
+ PDF Chat Level-spacing distribution of a singular billiard 1993 Takaomi Shigehara
N. Yoshinaga
Taksu Cheon
T. Mizusaki
+ PDF Chat Random-matrix theories in quantum physics: common concepts 1998 Thomas Guhr
Axel MĂŒller–Groeling
Hans A. WeidenmĂŒller
+ Inside-outside duality for planar billiards: A numerical study 1995 Barbara Dietz
Jean-Pierre Eckmann
Claude‐Alain Pillet
Uzy Smilansky
Iddo Ussishkin
+ PDF Chat First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard 2006 E. Bogomolny
Barbara Dietz
Thomas Friedrich
M. Miski-Oglu
A. Richter
F. SchÀfer
C. Schmit
+ Conditions of stochasticity of two-dimensional billiards 1991 Leonid Bunimovich
+ PDF Chat Nearest-neighbor distribution for singular billiards 2002 E. Bogomolny
Olivier Giraud
C. Schmit
+ PDF Chat Wave chaos in quantum billiards with a small but finite-size scatterer 1996 Takaomi Shigehara
Taksu Cheon
+ PDF Chat Quantum chaotic scattering in microwave resonators 2010 Barbara Dietz
Thomas Friedrich
H. L. Harney
M. Miski-Oglu
A. Richter
F. SchÀfer
H. A. WeidenmĂŒller
+ PDF Chat On the theory of cavities with point-like perturbations: part II. Rectangular cavities 2011 T. Tudorovskiy
Ulrich Kuhl
H-J Stöckmann
+ Regularity and chaos in classical mechanics, illustrated by three deformations of a circular 'billiard' 1981 Michael Berry
+ PDF Chat Scale anomaly and quantum chaos in billiards with pointlike scatterers 1996 Taksu Cheon
Takaomi Shigehara
+ PDF Chat Scattering, reflection and impedance of waves in chaotic and disordered systems with absorption 2005 Yan V. Fyodorov
Dmitry V. Savin
H.-J. Sommers
+ PDF Chat On the ergodic properties of nowhere dispersing billiards 1979 Leonid Bunimovich
+ Cross-section fluctuations in chaotic scattering 2010 Barbara Dietz
H. L. Harney
A. Richter
F. SchÀfer
H. A. WeidenmĂŒller
+ PDF Chat Chaotic scattering in the regime of weakly overlapping resonances 2008 Barbara Dietz
Thomas Friedrich
H. L. Harney
M. Miski-Oglu
A. Richter
F. SchÀfer
H. A. WeidenmĂŒller
+ PDF Chat Distribution of Scattering Matrix Elements in Quantum Chaotic Scattering 2013 Santosh Kumar
A. Nock
H.-J. Sommers
Thomas Guhr
Barbara Dietz
M. Miski-Oglu
A. Richter
F. SchÀfer
+ PDF Chat Short-range plasma model for intermediate spectral statistics 2001 E. Bogomolny
Ulrich Gerland
C. Schmit
+ PDF Chat Nonperiodic echoes from quantum mushroom-billiard hats 2009 Barbara Dietz
Thomas Friedrich
M. Miski-Oglu
A. Richter
F. SchÀfer
T. H. Seligman
+ Anderson localization in a string of microwave cavities 1999 C. Dembowski
H.-D. GrÀf
Ralph Hofferbert
H. Rehfeld
A. Richter
T. Weiland
+ The joint energy distribution function for the Hamiltonian for the one-channel case 1998 H.‐J. Stöckmann
P. Ć eba
+ Dynamical systems with elastic reflections 1970 Yakov G. Sinai
+ PDF Chat Spectral statistics of rectangular billiards with localized perturbations 2002 Saar Rahav
Shmuel Fishman
+ PDF Chat Rabi oscillations at exceptional points in microwave billiards 2007 Barbara Dietz
Thomas Friedrich
Jan Metz
M. Miski-Oglu
A. Richter
F. SchÀfer
Charles Stafford
+ PDF Chat Long-range correlations in rectangular cavities containing pointlike perturbations 2016 MaƂgorzata BiaƂous
Vitalii Yunko
Szymon Bauch
MichaƂ Ɓawniczak
Barbara Dietz
Leszek Sirko
+ Classical and quantum billiards : integrable, nonintegrable and pseudo-integrable 1992 Karol ƻyczkowski
+ PDF Chat Chaos and Regularity in the Doubly Magic Nucleus<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mi>Pb</mml:mi></mml:mrow><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>208</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math> 2017 Barbara Dietz
Andréas Heusler
K. H. Maier
A. Richter
B. A. Brown
+ PDF Chat Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison 2017 Santosh Kumar
Barbara Dietz
Thomas Guhr
A. Richter
+ PDF Chat Singular statistics 2001 E. Bogomolny
Ulrich Gerland
C. Schmit
+ PDF Chat On the theory of cavities with point-like perturbations: part I. General theory 2008 T. Tudorovskiy
R. Höhmann
Ulrich Kuhl
H-J Stöckmann
+ PDF Chat Singular statistics revised 2010 T. Tudorovskiy
Ulrich Kuhl
H-J Stöckmann
+ PDF Chat Magnetoresonances on a lasso graph 1997 Pavel Exner
+ PDF Chat Quantum and wave dynamical chaos in superconducting microwave billiards 2015 Barbara Dietz
A. Richter
+ PDF Chat Point perturbations of circle billiards 2003 Saar Rahav
Oran Richman
Shmuel Fishman