Interacting quantum observables: categorical algebra and diagrammatics

Type: Article

Publication Date: 2011-04-14

Citations: 382

DOI: https://doi.org/10.1088/1367-2630/13/4/043016

Abstract

This paper has two tightly intertwined aims: (i) To introduce an intuitive and universal graphical calculus for multi-qubit systems, the ZX-calculus, which greatly simplifies derivations in the area of quantum computation and information. (ii) To axiomatise complementarity of quantum observables within a general framework for physical theories in terms of dagger symmetric monoidal categories. We also axiomatize phase shifts within this framework. Using the well-studied canonical correspondence between graphical calculi and symmetric monoidal categories, our results provide a purely graphical formalisation of complementarity for quantum observables. Each individual observable, represented by a commutative special dagger Frobenius algebra, gives rise to an abelian group of phase shifts, which we call the phase group. We also identify a strong form of complementarity, satisfied by the Z and X spin observables, which yields a scaled variant of a bialgebra.

Locations

  • New Journal of Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Strathprints: The University of Strathclyde institutional repository (University of Strathclyde) - View - PDF
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Diagrammatic Axiomatisation for Qubit Entanglement 2015 Amar Hadzihasanovic
+ A Diagrammatic Axiomatisation for Qubit Entanglement 2015 Amar Hadzihasanovic
+ PDF Chat A Diagrammatic Axiomatisation for Qubit Entanglement 2015 Amar Hadzihasanovic
+ Categorical Semantics for Feynman Diagrams 2022 Razin A. Shaikh
Stefano Gogioso
+ PDF Chat Strong Complementarity and Non-locality in Categorical Quantum Mechanics 2012 Bob Coecke
Ross Duncan
Aleks Kissinger
Quanlong Wang
+ Completeness of Graphical Languages for Mixed States Quantum Mechanics 2019 Titouan Carette
Emmanuel Jeandel
Simon Perdrix
Renaud Vilmart
+ Generalised Compositional Theories and Diagrammatic Reasoning 2015 Bob Coecke
Ross Duncan
Aleks Kissinger
Quanlong Wang
+ Categorical Quantum Dynamics 2017 Stefano Gogioso
+ The algebra of entanglement and the geometry of composition 2017 Amar Hadzihasanovic
+ The compositional structure of multipartite quantum entanglement 2010 Bob Coecke
Aleks Kissinger
+ The compositional structure of multipartite quantum entanglement 2010 Bob Coecke
Aleks Kissinger
+ PDF Chat Interacting Bialgebras Are Frobenius 2014 Filippo Bonchi
Paweł Sobociński
Fabio Zanasi
+ Complementarity 2019 Chris Heunen
Jamie Vicary
+ Graphical Calculi and their Conjecture Synthesis 2020 Hector Miller-Bakewell
+ Graphical Calculi and their Conjecture Synthesis 2020 Hector Miller-Bakewell
+ Enriching Diagrams with Algebraic Operations 2023 Alejandro Villoria
Henning Basold
Alfons Laarman
+ PDF Chat ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces 2024 Boldizsár Poór
Razin A. Shaikh
Quanlong Wang
+ Completeness and the ZX-calculus 2016 Miriam Backens
+ PDF Chat Three qubit entanglement within graphical Z/X-calculus 2011 Bob Coecke
Bill Edwards
+ PDF Chat Diagrammatic Reasoning beyond Clifford+T Quantum Mechanics 2018 Emmanuel Jeandel
Simon Perdrix
Renaud Vilmart