Stochastic gradient descent for hybrid quantum-classical optimization

Type: Article

Publication Date: 2020-08-31

Citations: 199

DOI: https://doi.org/10.22331/q-2020-08-31-314

Abstract

Within the context of hybrid quantum-classical optimization, gradient descent based optimizers typically require the evaluation of expectation values with respect to the outcome of parameterized quantum circuits. In this work, we explore the consequences of the prior observation that estimation of these quantities on quantum hardware results in a form of stochastic gradient descent optimization. We formalize this notion, which allows us to show that in many relevant cases, including VQE, QAOA and certain quantum classifiers, estimating expectation values with $k$ measurement outcomes results in optimization algorithms whose convergence properties can be rigorously well understood, for any value of $k$. In fact, even using single measurement outcomes for the estimation of expectation values is sufficient. Moreover, in many settings the required gradients can be expressed as linear combinations of expectation values -- originating, e.g., from a sum over local terms of a Hamiltonian, a parameter shift rule, or a sum over data-set instances -- and we show that in these cases $k$-shot expectation value estimation can be combined with sampling over terms of the linear combination, to obtain "doubly stochastic" gradient descent optimizers. For all algorithms we prove convergence guarantees, providing a framework for the derivation of rigorous optimization results in the context of near-term quantum devices. Additionally, we explore numerically these methods on benchmark VQE, QAOA and quantum-enhanced machine learning tasks and show that treating the stochastic settings as hyper-parameters allows for state-of-the-art results with significantly fewer circuit executions and measurements.

Locations

  • Quantum - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Refubium (Universitätsbibliothek der Freien Universität Berlin) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ An Empirical Comparison of Optimizers for Quantum Machine Learning with SPSA-based Gradients 2023 Marco Wiedmann
Marc Hölle
Maniraman Periyasamy
Nico Meyer
Christian Ufrecht
Daniel D. Scherer
Axel Plinge
Christopher Mutschler
+ PDF Chat An Empirical Comparison of Optimizers for Quantum Machine Learning with SPSA-Based Gradients 2023 Marco Wiedmann
Marc Hölle
Maniraman Periyasamy
Nico Meyer
Christian Ufrecht
Daniel D. Scherer
Axel Plinge
Christopher Mutschler
+ Fast gradient estimation for variational quantum algorithms 2022 Lennart Bittel
Jens Watty
Martin Kliesch
+ PDF Chat Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms 2021 Aram W. Harrow
John Napp
+ PDF Chat Evaluating analytic gradients on quantum hardware 2019 Maria Schuld
Ville Bergholm
Christian Gogolin
Josh Izaac
Nathan Killoran
+ Differentiable Analog Quantum Computing for Optimization and Control 2022 Jiaqi Leng
Yuxiang Peng
Yi-Ling Qiao
Ming Lin
Xiaodi Wu
+ Optimizing quantum optimization algorithms via faster quantum gradient computation 2019 András Gilyén
Srinivasan Arunachalam
Nathan Wiebe
+ PDF Chat Learning Parameterized Quantum Circuits with Quantum Gradient 2024 Keren Li
Y Wang
Pan Gao
Shenggen Zheng
+ PDF Chat Optimized gradient and Hessian estimators for scalable variational quantum algorithms 2022 Y. S. Teo
+ Random coordinate descent: a simple alternative for optimizing parameterized quantum circuits 2023 Zhiyan Ding
Taehee Ko
Jiahao Yao
Lin Lin
Xiantao Li
+ PDF Chat Kernel Descent -- a Novel Optimizer for Variational Quantum Algorithms 2024 Lars Simon
Holger Eble
Manuel Radons
+ PDF Chat General parameter-shift rules for quantum gradients 2022 David Wierichs
Josh Izaac
Cody Wang
Cedric Yen-Yu Lin
+ Fundamental limitations on optimization in variational quantum algorithms 2022 Hao-Kai Zhang
Chengkai Zhu
Geng Liu
Xin Wang
+ PDF Chat Error-Mitigation-Aided Optimization of Parameterized Quantum Circuits: Convergence Analysis 2022 Sharu Theresa Jose
Osvaldo Simeone
+ EQC : Ensembled Quantum Computing for Variational Quantum Algorithms 2021 Samuel Stein
Yufei Ding
Nathan Wiebe
Bo Peng
Karol Kowalski
Nathan Baker
James Ang
Ang Li
+ PDF Chat EQC : Ensembled Quantum Computing for Variational Quantum Algorithms 2021 Samuel Stein
Yufei Ding
Nathan Wiebe
Bo Peng
Karol Kowalski
Nathan Baker
James S. Ang
Ang Li
+ General parameter-shift rules for quantum gradients 2021 David Wierichs
Josh Izaac
Cody Wang
Cedric Yen-Yu Lin
+ PDF Chat Latency considerations for stochastic optimizers in variational quantum algorithms 2023 Matt Menickelly
Yunsoo Ha
Matthew Otten
+ Latency considerations for stochastic optimizers in variational quantum algorithms 2022 Matt Menickelly
Yunsoo Ha
Matthew Otten
+ An Empirical Review of Optimization Techniques for Quantum Variational Circuits 2022 Owen Lockwood

Works That Cite This (129)

Action Title Year Authors
+ PDF Chat Graph neural network initialisation of quantum approximate optimisation 2022 Nishant Jain
Brian Coyle
Elham Kashefi
Niraj Kumar
+ PDF Chat Demonstration of a Bosonic Quantum Classifier with Data Reuploading 2023 Takafumi Ono
Wojciech Roga
Kentaro Wakui
Mikio Fujiwara
Shigehito Miki
Hirotaka Terai
Masahiro Takeoka
+ Robustness of quantum algorithms against coherent control errors 2023 Julian Berberich
Daniel Fink
Christian Holm
+ PDF Chat Quantum computational chemistry 2020 Sam McArdle
Suguru Endo
Alán Aspuru‐Guzik
Simon C. Benjamin
Xiao Yuan
+ Equivalence of quantum barren plateaus to cost concentration and narrow gorges 2022 Andrew Arrasmith
Zoë Holmes
M. Cerezo
Patrick J. Coles
+ PDF Chat Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms 2021 Aram W. Harrow
John Napp
+ PDF Chat Quantum natural gradient generalized to noisy and nonunitary circuits 2022 Bálint Koczor
Simon C. Benjamin
+ PDF Chat Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware 2022 Johannes Weidenfeller
Lucia C. Valor
Julien Gacon
Caroline Tornow
Luciano Bello
Stefan Woerner
Daniel J. Egger
+ PDF Chat Stochastic gradient line Bayesian optimization for efficient noise-robust optimization of parameterized quantum circuits 2022 Shiro Tamiya
Hayata Yamasaki
+ PDF Chat Non-trivial symmetries in quantum landscapes and their resilience to quantum noise 2022 Enrico Fontana
M. Cerezo
Andrew Arrasmith
Ivan Rungger
Patrick J. Coles