Type: Article
Publication Date: 2019-04-16
Citations: 137
DOI: https://doi.org/10.1109/tmi.2019.2911588
The segmentation of pancreas is important for medical image analysis, yet it faces great challenges of class imbalance, background distractions, and non-rigid geometrical features. To address these difficulties, we introduce a deep Q network (DQN) driven approach with deformable U-Net to accurately segment the pancreas by explicitly interacting with contextual information and extract anisotropic features from pancreas. The DQN-based model learns a context-adaptive localization policy to produce a visually tightened and precise localization bounding box of the pancreas. Furthermore, deformable U-Net captures geometry-aware information of pancreas by learning geometrically deformable filters for feature extraction. The experiments on NIH dataset validate the effectiveness of the proposed framework in pancreas segmentation.